BEST-P 建築操作マニュアル

<更新履歴>

- •2008年5月版
 - ・The BEST Program プログラム解説~建物側プログラム~(初版)をリリース
- •2009年1月版
 - ・マニュアル構成を一部変更
 - ·UI 画面の変更案を別紙作成
- •2009年6月版
 - ·Ver0.2.9c の UI 画面に対応
 - ・最大熱負荷計算に関する説明を追記
 - ・一括仕様設定に関する説明を追記
 - ・計算事例を追加
- •2010年4月版
 - ・BEST1004 版の UI 画面に対応
 - ・梁の置換法に関する説明をはじめわかりやすくなる説明を追記
- •2011年9月版
 - ・ポイント・便利な機能(入力データ作成上有効と思われる情報)を追加
 - ・索引を追加
 - ・最新版 UI 画面に対応
- •2012年5月版

最大・年間計算データの共通化

- ・季節係数を最大熱負荷計算専用にするかどうかを設定できる。
- ・最大、年間計算用の空調・換気スケジュールを別々に設定できる。
- ・最大負荷計算結果が装置容量として自動設定され、その結果を表示できる。
- ・最大・年間計算の切り換えのためには、気象と計算範囲の画面だけを設定 変更すればよい。

空調設定室温のスケジュール入力

・設定室温をスケジュール入力できる。

•2012年10月版

- ・時刻変動スケジュールの入力画面変更(スケジュール値の並べ替え機能等)
- ・最大負荷計算結果を参照しながら、年間計算用空調容量を設定できる。

- ・壁体材料データベースの追加(試して学ぶ熱負荷 HASPEE の材料熱定数表)
- ・ユーザーによる気象データ作成方法(EPW データの作成方法)を追記。

•2013年7月版

- ・XML インポート機能を追加(異なるバージョンのデータもインポート可)
- ・ユーザ壁 DB(データベース)編集機能を追加
- ・マスター画面の「要素」と「一括仕様設定」、ワークスペースの「ゾーン設定」と 「一括仕様設定」の順序入替え
- ・計算結果閲覧用 2D グラフの設定画面を改良
- ・「計算範囲」、「気象」の複数データ登録を可能にし、計算範囲画面で「気象」を 選択可能とした。計算実行時に「計算範囲」データを指定する方式に変更。
- ・週間スケジュールに、期間別モードスケジュールの指定機能を追加。年間 スケジュールのマスター画面に、「平日・休日・そのほかモードスケジュール」 の専用画面を追加。
- ・「非連成計算空調運転モード」の年間スケジュールの専用画面を追加。
- ・外壁の外側温度の年間スケジュール入力機能を追加。
- ・2007 年版、2012 年版の窓 DB(データベース)の使用が可能になった。ガラス品種 指定にライブラリー名を追加。また、窓熱性能値の自由入力機能を追加。
- ・ゾーン空調条件画面の変更

•2014年6月版

・ダブルスキン、AFWの新計算機能とDBを追加。

•2015年6月版

自然換気計算機能を追加。

•2016年10月版

- •連成用自然換気の計算機能を追加。
- ・外気導入制御の計算機能を追加。

•2018年5月版

- ・自然換気制御に、その他の条件と、連成計算での注意事項を追記。
- ・非連成計算 外気導入制御に、その他の条件を追記。
- ・自然換気に、連成計算での注意事項を追記。
- ・利用可能な気象データに、拡張アメダス気象データの 2001~2010 年実在年と 2010 年版標準年データを追加。

- ・EPW フォーマット気象データを利用する場合の日射量計算法を改良。
- ・エンジン入力データの XML フォーマットを整理。
- ・表計算ソフトを活用した入力支援ツール (EXCEL 入力データ)の取込機能を追加。 (フォーマットデータは準備中)

•2019年2月版

- ・時刻変動スケジュール入力における年間スケジュールの入力方法を追記。
- ・自然換気に関する結果出力ファイルの説明に、月別結果出力ファイルの説明を 追記。
- ・外気導入制御に関する結果出力ファイルの説明に、月別結果出力ファイルの説明を追記。

•2020年8月版

- 気象データ関連の説明を追加、更新。
 - ・以下の拡張アメダス気象データが BEST に内蔵され、利用可能になった。 国内主要 12 都市の標準年データ(2010 年版) 全国約 840 地点の設計用データ更新版(2010 年版)
 - ・気象データの地点一覧表を更新。
- ・用語の変更:季節係数→内部発熱係数(季節による内部発熱の割増、割引を 行う補正係数)
- ・用語の変更:季節スケジュール→衣替えスケジュール(在室者の着衣量、代謝量の季節変動)
- ・用語の変更:計算範囲→計算内容(共通データ設定において、計算タイプや計算 期間などの設定を行う画面名称)
- ・時刻変動スケジュールの説明を一部追記、修正。

•2022年8月版

- ・1つの物件データに、最大熱負荷計算、年間熱負荷計算、エネルギー消費量計算 の3種類が可能な入力データを設定可能となった。
- ・外気取入量制御において、室内設定 CO2 濃度による計算が可能となった。

•2023年9月版

・標準年 EA 気象データの 2020 年版と 2086 年将来版に関する説明を追記。

C. 建築操作マニュアル

BEST-P

The BEST Program

1. はじめに	11
1.1. 本書の位置づけ	11
1.2. 建築プログラムの特徴	11
2. プログラム使用方法	15
2.1. データ設定の流れ	15
2.2. 共通	17
2.2.1. 建物·検討名称	18
2.2.2. 気象	
2.2.3. 計算內容	25
2.2.4. 特別休日	25
2.2.5. スケジュールの考え方	26
2.2.6. 年間スケジュール	27
2.2.7. 衣替えスケジュール	29
2.2.8. 平日・休日・その他モードスケジュール	
2.2.9. 週間スケジュール	31
2.2.10. 時刻変動スケジュール	32
2.3. 建築 基本	48
2.3.1. 計算時間間隔	48
2.3.2. 軒高など	49
2.3.3. 壁体構造	50
2.3.4. 外部形状	
2.3.5. 外部形状_日除け	
2.3.6. 外部形状 ダブルスキン	

2.3.7. 外表面	55
2.3.8. 自然換気制御	56
2.3.9. 非連成計算 外気導入制御	59
2.3.10. 非連成計算 空調運転モード	62
2.3.11. 非連成計算 空調運転モードスケジュール	64
2.3.12. 建築計算のデータ保存	65
2.4. 一括仕様設定	66
2.4.1. 外壁条件	68
2.4.2. 內壁条件	68
2.4.3. 家具類条件	69
2.4.4. 窓条件	69
2.4.5. AFW 条件	70
2.4.6. 昼光条件	70
2.4.7. ゾーン間換気条件	71
2.4.8. 照明条件	72
2.4.9. 調光条件	72
2.4.10. 機器条件	73
2.4.11. 人体条件	
2.4.12. 隙間風条件	
2.4.13. 自然換気条件	
2.4.14. ゾーン計算結果	77
2.5. 建築 要素	
2.5.1. 室グループ・室・ゾーンの定義	
2.5.2. 室グループ・室・ゾーンの設定方法	
2.5.3. 室グループ	79
2.5.4. 室	
2.5.5. ゾーン	
2.6. ゾーン要素	
2.6.1. 外壁	
2.6.2. ダブルスキン内側壁	
2.6.3. 內壁	
2.6.4. 家具類	
2.6.5. ダブルスキン内側窓	
2.6.6. 窓・昼光	
2.6.7. AFW	
2.6.8. ゾーン間換気	

2.6.9. 照明	
2.6.10. 機器	93
2.6.11. 人体	94
2.6.12. 隙間風	96
2.6.13. 自然換気	97
2.6.14. ゾーン結果出力	99
2.6.15. ゾーン空調条件	
7. 計算出力ファイル	101
2.7.1. 各時間ステップの結果出力ファイル	
2.7.2. 1時間間隔値の結果出力ファイル	
2.7.3. 月別・年間値の結果出力ファイル	103
2.7.4. 最大負荷検索結果出力ファイル	
2.7.5. ダブルスキンに関する結果出力ファイル	
2.7.6. 自然換気に関する結果出力ファイル	106
2.7.7. 外気導入制御に関する結果出力ファイル	
2.7.8. 計算結果のグラフによる確認	110
8. XML ファイルのインポート機能	113
9. ユーザ定義の壁体データベースの利用方法	114
熱負荷計算法	116
1. 室熱平衡式と解法	116
2. 壁体・梁の計算方法	118
3. 家具の計算方法	121
4. 窓の計算方法	121
.5. 外部日除の計算方法	122
.6. 隙間風・ゾーン間換気の計算方法	122
7. 内部発熱の計算方法	123
3.7.1. 人体	
3.7.2. 照明	
3.7.3. 機器発熱	123
8. 熱的快適性の計算方法	123
9. スケジュールの計算方法	
.10. 最大負荷の計算方法	
3.10.1. 拡張アメダス設計用気象データの概要	124
3.10.2. 予冷熱計算法と最大熱負荷の決め方	
3.10.3. 計算上の注意事項	125

4.	昼光の計算法	<u> </u>	•••••	•••••	126
4.1	. 昼光利用効	为果		•••••	126
4.2	2. 昼光照度の	算出			126
4.3	3. 照明との連	成計算		•••••	128
5.	ユーザーによ	る気象データの作	乍成方法		129
5.1	. EPW データ	タの作成方法			129
6.	壁体材料・窓方	ガラスの物性値デ	ータベースと入力	jデータXML構具	戏132
6.1	データベー	-スの構成		•••••	132
6.2	2. 壁体材料デ	ータベース			133
6.3	3. 窓ガラスデ	ータベース			138
6.4	1. 入力データ	′ XML 構成			152
6.5	S. JPA (JAVA	A PERSISTENCE AI	PI)		153
7.	計算事例	•••••	•••••	•••••	157
7.1	. 計算事例 1	(事務所)			157
7.2	2. 計算事例 2	(住宅)			158
7.3	3. 計算事例 3	(BESTEST CAS	SE600)		159
7.4	4. 計算事例 4	(事務所最大負荷	节)	•••••	160
7.5	5. 計算事例 5	(住宅最大負荷)		•••••	163
8.	附録 A 気象	データの地点一覧	笔表		164

便利な機能の一覧

便利な機能 1	入力データの保存(画面を閉じてしる	まったときの取扱い)15
便利な機能 2	DVD から読み込んだ拡張アメダス気	象データは BEST に保存される. 22
便利な機能3	スケジュールデータの編集方法	28
便利な機能 4	時刻変動スケジュール入力におけるst	年間スケジュール名の省略 32
便利な機能 5	時刻変動スケジュールの入力	36
便利な機能 6	壁体構造入力における標準部材構成	50
便利な機能 7	壁体構造入力における部材の編集	51
便利な機能8	壁体材料データベース(試して学ぶ熱	負荷 HASPEE) 51
便利な機能 9	出力期間を空欄とした場合の取扱い.	65
便利な機能 1	0 室グループやゾーンのコピー機能	
便利な機能 1	1 一括仕様設定の活用	
便利な機能 1	2 XML のインポート機能	115
便利な機能 1	3 壁材料をユーザにて定義可能	

ポイントの一覧

ポイント 1	BEST の気象データと最大熱負荷計算の特徴	22
ポイント 2	拡張アメダス設計用気象データ(暖房2タイプ+冷房3タイプ)とは	22
ポイント 3	日周期定常計算とは	22
ポイント 4	助走計算日数(計算内容入力画面)の設定方法	24
ポイント 5	最小時間間隔(計算内容入力画面)の設定方法	24
ポイント 6	最大熱負荷計算(日周期定常計算)における計算期間	24
ポイント 7	連成計算データ作成の手順	24
ポイント 8	内部発熱係数とは	28
ポイント 9	年間スケジュール入力上の注意点	28
ポイント 10	時刻変動スケジュール入力における注意事項	33
ポイント 11	建築計算時間間隔と解法設定用空調スケジュール	35
ポイント 12	予冷熱時間の設定における注意事項	42
ポイント 18	壁体構造入力における壁タイプについて	50
ポイント 14	. ゾーン入力における天井高と床面地上高さ	80
ポイント 15	ゾーン要素データの入力で注意すべきポイント	80
ポイント 16	家具類の顕熱熱容量と潜熱熱容量係数	86
ポイント 17	ゾーン 間換 気の入力方法	91
ポイント 18	最大熱負荷計算における内部発熱係数	92
ポイント 19	衣替えスケジュールと内部発熱係数の違い	94
ポイント 20	隙間風入力における注意事項	96
ポイント 21	詳細な時刻変動解析が可能	99
ポイント 22	最大熱負荷計算では装置入力は不要	100

1. はじめに

1.1. 本書の位置づけ

本書は The BEST Program (以下、「BEST」と省略する)全体のユーザーズマニュアルである「BEST-P 操作マニュアル」を補完するもので、「建築プログラム」部分についての解説書である。 1~2 章は「建築プログラム」を日常的に利用するユーザを対象とした入力方法に関する説明である。 「建築プログラム」をより深く理解して高度な活用をしたいユーザには、3 章以降の理論的な資料を参照して頂きたい。

1.2. 建築プログラムの特徴

「BEST」の「建築プログラム」には、いくつもの特徴がある。特徴を理解して活用すると、再現性の高い計算や高度な予測評価のための計算が可能になる。

計算方法の詳細は3章以降で解説する。

①各種気象データの利用が可能

気象データは拡張アメダスデータの適用を基本とするが、「BEST」においては計算時間間隔が 1時間より短くすることが可能であるので、それにあわせて気象データも 1 分間隔に変動するものが開発された。現在、1 分間隔の東京実在年データ(2006 年)が BEST に内蔵され、利用可能である。

年間計算に利用する拡張アメダスデータは、国内約 840 地点の標準年データ(1995 年版、2000 年版、2010 年版、2020 年版)及び将来標準年データ(2086 年版)と実在年データ(1981~2020 年の各年)が整備され、㈱気象データシステム(https://www.metds.co.jp/)より有償で公開されている。BEST には、国内主要 12 都市(旭川、札幌、盛岡、仙台、前橋、東京、静岡、名古屋、富山、大阪、鹿児島、那覇)の標準年データ(近年版)が内蔵されいつでも利用できる。そのほかの年間計算用拡張アメダスデータは、㈱気象データシステムより購入すると、そのDVDから気象データを読込んで計算することができる。

2009 年 5 月に、拡張アメダス設計用気象データが無償公開されることが決まり、「BEST」でも 約 840 地点の設計用気象データ(2000 年版)を利用可能になった。現在は、その更新版である 2010 年版が内蔵され、いつでも利用が可能である。

世界の気象データには、米国のエネルギーシミュレーションツール EnergyPlus 用に開発された EPW データ (標準年気象データ)があり、海外約 2000 地点が用意され、無償公開されている (https://energyplus.net/weather)。また、拡張アメダス気象データ(標準年および実在年)を EPW フォーマットに変換した EA/EPW データも、㈱気象データシステムから有償公開されている。 BEST では、EPW データも利用することもできる。また、2011 年 9 月に、WEADAC データの利用が可能になった。 WEADAC データには、約 3700 地点の世界の設計用気象データと月代表日気象データが含まれていて、㈱気象データシステムから購入可能である。

②多様な窓種類とプラインド操作に対する計算が可能

1,000 種類以上の窓特性のデータベースが整備されている。また、窓熱性能値の自由入力も可能

である。ブラインド使用時の計算には、従来の日射遮蔽係数法ではなく、スラット隙間を通り抜ける 日射成分をより正確に考慮する計算法を採用している。また、昼光利用照明制御計算が可能であ る。ブラインドの操作方法としては開閉スケジュールのほかに部分使用やスラット角制御を設定でき る。

高性能窓システムとして、ダブルスキン、エアフローウィンドウ(AFW)の計算が可能である。多層吹抜けダブルスキンに対しては、自然換気時に生じるダブルスキン内の上下温度分布を考慮して階による熱負荷の違いを計算することもできる。AFWについては、窓排気の一部を空調機に回収する場合も計算できる。ガラス種類も豊富であり、ダブルスキン用にインナースキンが複層ガラスの場合、AFW 用に外側が複層ガラスの場合の性能が用意されている。

3各種スケジュールの季節変動を設定可能

内部発熱などの各種スケジュールの週間・時刻変動を季節(期間)により設定することができる。また、学校などの長期休暇の入力が可能となっている。なおスケジュールとは、発生強度や発生率の1日分の時刻変動を時系列に表現したものである。

4)空調運転スケジュール設定の自由度が高い

従来のプログラムでは空調設備の運転開始・終了は1日に1回に限定されていることが多いが、「建築プログラム」を単独で利用する場合には空調設備の運転開始・終了を1日に複数回設定できる。 これにより断続的に空調が on/off されるような個室などの計算に容易に対応できる。

(5)室熱負荷要素データの一斉変更を容易にする事前登録方式(一括仕様設定)

室単位で熱負荷要素を登録することを基本にしているが、建物全館の要素データを一斉に変更可能な事前登録方式(一括仕様設定)を採用している。例えば窓ガラスの仕様を透明ガラスから反射ガラスに変えるとき、室ごとに変えなくても建物全館を一度に変更できる事前登録という方式を採用し入力の簡易化を図っている。(一括仕様設定については 2.4 を参照。)

⑥PMV、作用温度による温熱環境評価が可能

対流・放射を近似的に分離した計算方法を採用しているので室内表面温度を求めることができる。 表面温度を用いて PMV、作用温度(OT)が得られるので、それらを室内環境設定指標とした室内環 境制御計算も扱うことができる。

7多数室相互の熱的影響を考慮

従来の熱負荷計算プログラムでは室毎の計算をしていることが多い。「建築プログラム」は建物の多数の室の構成を、室グループ>室>ゾーンの3階層で定義し、ひとつの室グループに属するゾーン間相互の熱的影響を考慮した計算ができる。この機能を利用すれば、従来ひとつの空間として計算することが多い天井内・居住空間・床下空間を3つの空間に区分して計算することもできる。また、熱負荷計算において曖昧に想定していた(廊下・階段などの非空調室を含む)隣接空間の室内温度状態を計算し、その熱的影響を考慮することも可能である。

8計算時間間隔が可変

従来の熱負荷計算プログラムでは計算時間間隔を1時間としていることが殆どであった。「建築プログラム」は計算時間間隔を、定常に近い 2,3 時間から、急激な変動や制御性の解析に使えるように 1 分まで、計算対象時刻にあわせて自由に選べるようにしている。

ただし、「BEST」の現バージョンで連成計算をする場合は計算対象の全期間を通じて一定の計算時間間隔としており、将来は可変とする予定である。

(9)時間帯により解法(計算方法)を切り換える

「BEST」は建築と各設備システム間における相互干渉を重視しており、基本的には建築と各設備を 連成して計算するプログラムであり、計算時間を短縮するために、空調運転状態により2種の解法 (エクスプリシット法とインプリシット法:「3.1 室熱平衡式と解法」を参照)を切り換えて計算する。

10連成計算のほかに非連成計算も可能

建築と設備の連成計算によるエネルギーシミュレーションのほかに、最大・年間熱負荷計算(非連成計算と呼ぶ)も可能である。1 つの物件データに、最大熱負荷計算、年間熱負荷計算、エネルギ消費量計算の3種類が可能な入力データを設定でき、シミュレーション実行時にどの計算法を実行するか選択できる。年間熱負荷計算の前に最大熱負荷計算を実行すると、最大熱負荷計算の冷暖房装置容量の自動設定機能を利用したうえで年間計算をすることができる。

⑪拡張アメダス設計用気象データを利用する最大熱負荷計算が可能

拡張アメダス設計用気象データを利用する日周期定常最大熱負荷計算が可能である。暖房 2 種類、冷房 3 種類の気象データの日周期定常状態 5 日分を連続出力するとともに、最大熱負荷を自動検出する。任意の予冷熱時間の設定が可能であり、1 日に何回も予冷熱時間帯がある間々欠運転にも対応している。

(12)自然換気制御の計算が可能

空調機で冷却処理中に自然換気を行うハイブリッド空調を含めた自然換気の計算が可能である。 換気口の有効開口面積を与える「有効開口面積法」と自然換気中の換気回数を与える「換気回数 法」の 2 種類の計算法が用意されている。有効開口面積法の場合は、無風時の中性帯高さを固定 条件として与えるなどの計算の簡易化を図ることにより、簡単な入力で自然換気量の変動を計算で きるようにしている。各種自然換気許可条件を考慮可能であることも特徴である。

③非連成用の外気導入制御の計算が可能

外気導入制御として、外気冷房、最小外気量制御(CO₂ 濃度制御)、全熱交換器による熱回収の計算を、非連成でも行える。これを利用すると、建築的省エネ手法と外気導入の省エネ手法の複合効果を手軽に熱負荷で検討できる。自然換気と外気冷房を併用する場合も計算可能である。

建築プログラムの利用法をスムーズに習得して活用できるようになるための手助けとして、本マニュ アルのほかに、次のような解説書やサンプルデータが公開され、講習会も実施されている。

① TRYBEST (例題演習テキスト)

「ひとりひとりがコピペ感覚で動かせる」をコンセプトに作成され、機能や結果の活用方法など実務や研究に応えうる内容を扱っている。ゼロから自分で計算モデルを作らなくても、用意されているモデルを使い、テキスト通りに動かしてみることによって、BEST のいろいろな機能を体験できる。https://www.ibec.or.jp/best/tec_info.html

2 サンプルデータ

標準オフィスビルや 2 ゾーンオフィス断面についての説明書付きサンプルデータが用意されている。 https://the-best-program.sharestage.com/asp/UA001 (User ID 及び Password の入力が必要)

3 講習会

毎年、建築計算に関する講習会を実施している。 https://www.ibec.or.jp/best/tec_info.html

2. プログラム使用方法

ここでは、プログラムに実際に建築データを入力する手順について記載する。

BEST-Pの画面レイアウト(詳細はBEST-P操作マニュアルを参照)は、"メニュー"、"マスター"、"ワークスペース"から構成されており、建築プログラムのデータ入力に際しては、それぞれ"共通"、"建築"タブ内の画面で入力を行っていく。

2.1. データ設定の流れ

図 2-1 に、共通・建築データの一般的な入力の流れを示す。

BEST の入力画面には、大きく、「共通」、「建築」、「設備」、「計算順序」の種類がある。共通条件は、「共通」画面から入力する項目を指し、気象データや計算方法、計算期間、各種スケジュール条件が含まれている。建築条件は、「建築」画面から入力する項目であり、建物全体に関係する基本条件、ゾーン設定のときに便利な一括仕様設定条件、ゾーン設定条件がある。

便利な機能 1 入力データの保存(画面を閉じてしまったときの取扱い)

入力操作を中断する場合は、作成中の入力データを保存しましょう。 ただし、保存せずに BEST の画面を閉じてしまった場合でも、閉じる直前の状態が保存されており、 次に BEST を開いたときには、閉じる直前の内容が表示されます。

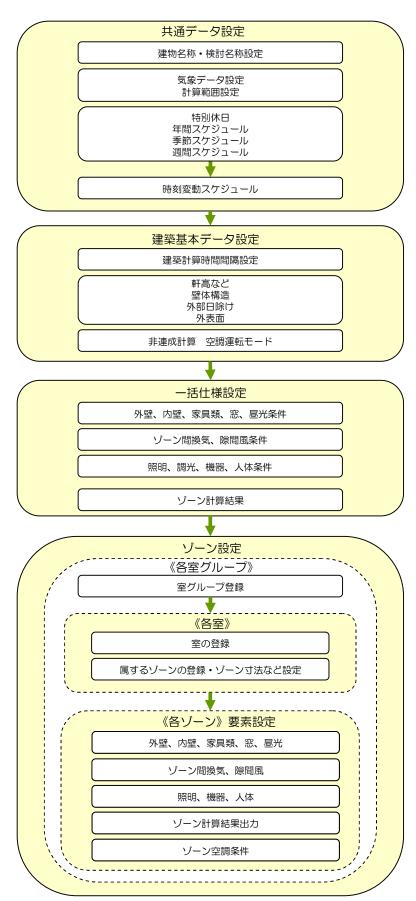


図 2-1 データ入力の流れ(建築プログラム)

2.2. 共通

図 2-2 に"共通"画面を示す。

この画面では、BEST 全体(建築・空調・衛生・電気)に共通するデータを入力する。 入力項目は以下の通り。

- · 気象
- · 計算内容
- · 特別休日
- ・年間スケジュール年間スケジュール衣替えスケジュール平日・休日・その他モードスケジュール
- ・ 週間スケジュール
- ・ 時刻変動スケジュール

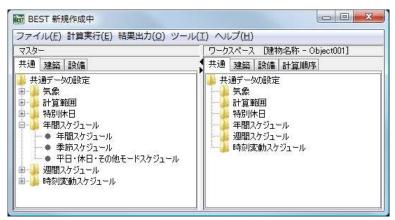


図 2-2. "共通"画面

"マスター"には、デフォルト値(=暗黙の指定値)が入力されたデータが格納されており、この値が そのまま使用可能である。もちろん、これらを適宜選択・加工・登録(登録とは"ワークスペース"に必 要項目を追加することをいう)することで、入力データを作成することが可能である。本マニュアル内 の画面例は、全てデフォルト値が入力されたものとなっている。

2.2.1. 建物·検討名称

図 2-3 に建物・検討名称入力画面を示す。 プロジェクトの新規作成の際に入力する。 建物・検討名称を、登録後に変更したい場合は、「ファイル→建物名称変更」を選ぶと、変更できる。

図 2-3 建物名称·検討名称入力画面

2.2.2. 気象

図 2-4 に気象入力画面を示す。

気象入力画面では、「気象データのタイプ」と「気象データ名称」の組み合わせに応じて、気象データ入力の欄が最低限の入力になるように作られている。表 2-1 に、気象データのタイプ、名称に応じた入力項目を示す。

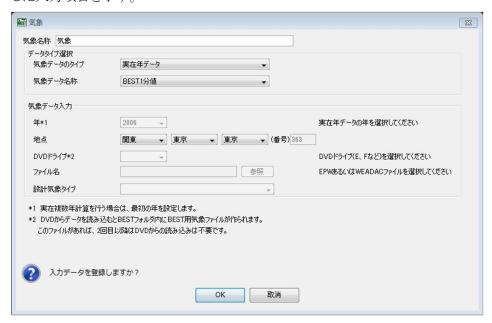


図 2-4. 気象入力画面

表 2-1. 気象の入力項目

気象データ タイプ	気象データ 名称	年	地点名	地点番号	DVD ドライブ	ファイル名	設計気象タイプ	備考 (使用可能なデータ)
実在年データ	BEST1分值	選択不可 (2006年)	選択不可 (東京)	入力不可 表示のみ	選択不可	参照不可	選択不可	2006年東京 BEST内蔵
	拡張アメダス 60分値	1981〜2020 から選択	選択可	11	選択可	11	n	国内約840地点 ユーザが用意 ^{*2}
標準年データ	拡張アメダス 60分値	1995、2000、 2010、2020、 2086から選択	"	"	"	"	n	国内約840地点 一部を除き、ユーザが 用意 ^{*3}
	EPW	選択不可	選択不可	入力不可	選択不可	参照可	n	世界約2000地点 国内約840地点 ユーザが用意 ^{*4}
月代表日データ	WEADAC	11	"	"	"	"	II .	世界約3700地点 ユーザが用意 ^{*2}
設計用データ	拡張アメダス 60分値	選択不可	選択可	入力不可 表示のみ	"	参照不可	次の3つから選択可 暖房2タイプ 冷房3タイプ 暖房2タイプ+冷房3タイプ	国内約840地点 (BEST内蔵)
	WEADAC	選択不可	選択不可	入力不可	"	参照可	次の3つから選択可 暖房 冷房 暖房+冷房	世界約3700地点 ユーザが用意 ^{*2}

^{*1} グレーの背景の欄は設定できない項目。

^{*2 (}株)気象データシステム(https://www.metds.co.jp/)から購入可能

^{*3} 旭川、札幌、盛岡、仙台、前橋、東京、静岡、名古屋、富山、大阪、鹿児島、那覇の近年版標準年データは、BEST内蔵 その他の標準年データは、(株)気象データシステムから購入可能

^{*4} 世界のデータは、米国EnergyPlusのホームページ(https://energyplus.net/weather)から無償で入手可能 国内のEA/EPWデータは、(株)気象データシステムから購入可能 他に、EPWフォーマットに従いユーザーが作成した独自の気象データも読み込み可能

■気象名称

計算を行いたい気象条件をあらかじめ複数登録しておき、「2.2.3 計算内容」にて選択することが出来る。たとえば、気象名称=最大熱負荷計算・年間計算の 2 種類を準備しておくと、計算内容の画面で、気象データの選択を切り替えることで、両方の計算が出来る。

■利用可能な気象データ

BEST プログラムには、東京の実在 1 年分の 1 分値データと国内 836 地点の設計用気象データおよび国内 12 都市(旭川、札幌、盛岡、仙台、前橋、東京、静岡、名古屋、富山、大阪、鹿児島、那覇)の近年版標準年データが内蔵されている。従って、12 都市に関する室内環境・エネルギーの詳細変動や年間エネルギー消費量の解析、また国内の設計用最大熱負荷計算は、気象データを別途準備することなく行うことが可能である。

その他の国内の都市の年間エネルギー計算には拡張アメダス気象データを、海外の都市の年間 エネルギー計算には EPW データを、海外の都市の設計用最大熱負荷計算を行うには WEADAC データを入手する必要がある。以下に各種気象データの概要を示す。

①BEST1 分値データ

BEST 開発と併せて開発された 1 分間隔に変動する 1 年間の気象データである。現在、東京のデータのみ利用可能であり、BEST ツールに内蔵されている。

②拡張アメダス標準年・実在年データ

標準年データは、10 年間あるいは 15 年間の実在年気象データをもとに作成された平均的な気象 データであり、1995 年版 (1981~1995 年の実気象から作成)、2000 年版 (1991~2000 年の実気象から作成)、2010 年版 (2001~2010 年の実気象から作成)、2020 年版(2011~2020 年の実気象から作成)の 4 種類がある。また、将来の気象を予測したデータとして、将来標準年 2086 年版(2077~2095 年を代表する気象)も発表された。実在年データは 1981~2020 年の各年の実気象データである。標準年気象データ、実在年気象データは国内約840地点について整備されていて、BESTに内蔵されているデータ以外のデータは、(株)気象データシステム (https://www.metds.co.jp/)より購入可能である。

③拡張アメダス設計用気象データ

2010 年版が最新版であり、国内 836 地点のデータがある。1981~2010 年の実在年データをもとに過酷な気象を選び平均化処理して作られている。BEST ツールに内蔵されておりいつでも利用可能である。拡張アメダス設計用気象データとそれを使用する最大熱負荷計算法については、「3.10 最大負荷の計算方法」を参照のこと。

注)BEST ツールに内蔵される 2010 年版設計用気象データは、(株)気象データシステム(MDS、https://www.metds.co.jp/)が著作権を有する拡張アメダス気象データの二次的著作物であり、BEST の入力データとしてのみ使用することができます。それ以外の目的で使用する場合は、MDS のホームページから、使用許諾契約に合意の上、ダウンロードして使用することができます。

* 地点番号は、付録 A 参照

④ EPW データ

米国エネルギー省が無償公開している海外約 2000 地点の標準年気象データ。下記サイトより入手可能である。

https://energyplus.net/weather

EPW データフォーマットに従い作成された気象データは、どれも使用することができる。EPW データフォーマットを利用して任意の気象データを作成する場合は、「5.ユーザーによる気象データの作成方法」を参照のこと。

5WEADAC 設計用・月代表日データ

世界約3700地点の設計用気象データ(1ヶ月基準危険率10%)と12ヶ月分の月代表日データである。(株)気象データシステムより購入可能である。

■データ入力方法

①BEST1 分値データ(東京)

- ・ 気象データタイプ:「実在年データ」を選択する。
- ・ 気象データ名称:「BEST1 分値」を選択する。
- ・ 地点:「関東-東京-東京」を選択する。

②拡張アメダス標準年・実在年データ

- ・ 気象データタイプ: 「実在年データ」あるいは「標準年データ」を選択する。
- ・ 気象データ名称:「拡張アメダス 60 分値」を選択する。
- ・年: 実在年データ使用の場合に該当年を選択する。複数年連続計算の場合は、開始年を選択する。
- ・ 地点:地点名を選択する。
- ・ DVD ドライブ: 気象データ DVD をセットしたドライブを選択する。(便利な機能 2 を参照)

3拡張アメダス設計用気象データ

- ・ 気象データタイプ: 「設計用データ」を選択する。
- ・ 気象データ名称:「拡張アメダス 60 分値」を選択する。
- ・ 地点:地点名を選択する。
- ・ 設計気象タイプ:冷暖房計算のときは「暖房 2 タイプ+冷房 3 タイプ」、暖房計算のみのときは「暖房 2 タイプ」、冷房計算のみのときは「冷房 3 タイプ」を選択する。

4EPW データ

- 気象データタイプ:「標準年データ」を選択する。
- 気象データ名称:「EPW」を選択する。
- ・ファイル名:参照ボタンをクリックして、計算に使用するEPWデータのパスを指定する。

⑤WEADAC 設計用・月代表日データ

- ・ 気象データタイプ: 「月代表日データ」あるいは「設計用データ」を選択する。
- 気象データ名称:「WEADAC」を選択する。
- ・ファイル名:参照ボタンをクリックして、計算に使用するWEADACデータのパスを指定する。

ポイント 1 BEST の気象データと最大熱負荷計算の特徴

BEST では、最大熱負荷計算のために、国内 842 地点の拡張アメダス設計用気象データを無償利用できます。この設計用気象データには、気象の特徴が異なる、冷房設計用 3 タイプ、暖房設計用 2 タイプのデータが含まれています。利用方法は、全てのタイプの日周期定常計算を連続して行い、得られた出力結果のなかから、最も大きな冷房負荷、暖房負荷を最大負荷として採用するという方法になります。

ポイント 2 拡張アメダス設計用気象データ(暖房 2 タイプ+冷房 3 タイプ)とは

冷房設計用には、エンタルピと気温の厳しい h-t 基準データ(太陽位置は 8 月 1 日)、日射量と気温の厳しい Jc-t 基準データ(8 月 1 日)、南面日射量と気温の厳しい Js-t 基準データ(一般地方(北緯 29°以北)は 9 月 15 日、それ以外の南方地方 10 月 15 日)があります。

暖房設計用には、気温と絶対湿度の厳しい t-x 基準データ(1月 30日)、気温が厳しく日射量の弱い t-Jh 基準データ(1月 30日)があります。

ポイント 3 日周期定常計算とは

1 日分の気象、内部発熱などの建物の使われ方、空調運転の条件を与え、連日同じ条件が続くと仮定して1日単位で安定した状態を求めることを、日周期定常計算と呼んでいます。

次の「計算内容」の項目で設定する助走計算日数とは、計算初期条件の影響が消えるまでに要すると考えられる計算日数のことで、助走計算期間が過ぎると日周期定常状態と判断します。

便利な機能 2 DVD から読み込んだ拡張アメダス気象データは BEST に保存される

DVD からある地点のある年の気象データを読み込むと、BEST フォーマットに変換された気象データファイルが BEST フォルダ内に作成されます。このファイルが存在すれば、2回目以降 DVD をセットする必要はありません。

2.2.3. 計算内容

計算内容の画面では、計算の種類や計算期間、最小計算時間間隔などを入力する。通常計算の 場合と最大負荷計算・月代表日計算の場合で、入力方法が異なる。

図 2-5. 計算内容入力画面

1)計算内容名称

計算内容を複数登録することが可能であるが、その識別のための名称を入力する。

シミュレーションを実行する際に、計算内容名称を指定することになる。たとえば、計算内容名称 年間計算(東京)・最大負荷計算(東京)・年間計算(札幌)・最大負荷計算(札幌)を準備しておき、シミュレーションを実行する際にこれらを選択するといった使い方が想定される。

2通常計算

気象データとして BEST1 分値データ、拡張アメダス標準年・実在年データ、EPW データを利用する一般的な非定常計算の場合である。

- 計算タイプ:「通常計算」を選択する。
- ・ 建築計算と設備計算
- a)建築単独計算(設備の詳細入力をしない熱負荷計算)の場合
- →建築計算:「する」を選択、設備計算:「しない」を選択する。
- b)連成計算(設備の詳細入力をするエネルギー計算)の場合
- →建築計算:「する」を選択、設備計算:「する」を選択する。
- ・本計算開始日、計算終了日:結果を利用する期間の初日と最終日を入力する。標準年気象 データ利用の場合は西暦年を省略して入力する。実在年気象データを利用する場合は、実 在年気象データが用意されている期間であれば、複数年にわたる計算期間を設定できる。
- · 助走計算日数(ポイント 4 を参照):通常はデフォルト値の 20 日のままでよい。

・ 最小時間間隔(ポイント 5を参照):通常はデフォルト値の5分のままでよい。

③最大負荷計算あるいは月代表日計算

気象データとして拡張アメダス設計用気象データか WEADAC データを利用する日周期定常計算の場合である。

- ・ 計算タイプ:「最大負荷計算・月代表日計算」を選択する。
- ・ 建築計算:「する」を選択、設備計算:「しない」を選択する。
- ・ 助走計算、最小時間間隔:「①通常計算」と同様とする。

4気象名称

あらかじめ登録された気象(2.2.2 気象を参照)から選択する。

ポイント 4 助走計算日数(計算内容入力画面)の設定方法

助走計算とは、計算初期条件の影響が消えるまでに必要な計算期間で、一般建物では 2~3 週間程度必要である。本計算開始日に対して、助走計算日数分だけ早い日から計算が実行される。

ポイント 5 最小時間間隔(計算内容入力画面)の設定方法

全体システムの最小の計算時間間隔であり、60分の約数で設定する。

連成計算の場合、計算誤差を抑えるため 10 分以下とすることが望ましいが、あまり短い間隔とすると演算時間増大の恐れがある。時間間隔を 10 分より長く設定する場合、誤差の影響を熱量積算値などで確認するとよい(時間間隔を長くすると熱量年間積算値は増加する。1 分間隔で計算した場合に対して、一般的には誤差 5%以内が望ましい)。建築プログラムの計算時間間隔は別に設定する(2.3.1 計算時間間隔を参照)。

ポイント 6 最大熱負荷計算(日周期定常計算)における計算期間

最大熱負荷計算では、日周期定常状態を求めるために、「計算内容」で指定した助走計算日数+1 日分の計算を繰り返し、最終日の結果を出力します。計算期間として、最終日が設計用太陽位置の日付となるような期間を自動設定します。

例えば、助走計算日数を 20 日とすると、計算期間は、h-t 基準、Jc-t 基準データのとき 7 月 12 日 \sim 8 月 1 日、Js-t 基準データのとき 8 月 26 日 \sim 9 月 15 日、t-x 基準、t-Jh 基準データのとき 1 月 12 日 \sim 1 月 30 日が設定されます。計算中に使用する内部発熱係数(内部発熱の割引き、割増し係数) や空調運転モードは、月日に応じて、後述する年間スケジュールをもとに決められます。

ポイント 7 連成計算データ作成の手順

建物全体のエネルギー消費量を求める場合、建築、空調、電気、衛生システムの入力データ全てを一挙に用意して計算するのではなく、まず建築データを作成し、建築単独計算(従来の熱負荷計算)を行います。熱負荷計算結果を調べて建築データが正しいことを確認してから、空調システムの入力データを作成し、建築と空調の連成計算を行い、その結果を確認することをお勧めします。

連成計算とは、詳細な設備システムの条件設定を行い、設備システムの制御と建築の応答の平衡 状態を時々刻々求める計算のことで、正確なエネルギー消費量の計算が可能です。建築と空調の 連成計算の後、さらに電気・衛生システムの入力データを作成追加して、建物全体のエネルギー 消費量を求めることが出来ます。このように、ステップを踏み、答えとデータを確認しながら計算を 進めると、スムーズで間違いのない計算が可能です。

2.2.4. 特別休日

図 2-6 に特別休日入力画面を示す。

気象データには、曜日・祭日が設定されているため、暦通りの休みであれば、ここで特別休日を登録する必要はない。

しかしながら、建物用途に応じて、年末年始休暇・夏期休暇・創立記念日など個別に登録する必要があれば、ここで入力する必要がある。特別休日は、1 日単位に設定してもよいし、期間で設定してもよい。

図 2-6. 特別休日入力画面

2.2.5. スケジュールの考え方

以降に、年間スケジュール・週間スケジュール・時刻変動スケジュールの入力方法について示すが、 ここではスケジュールデータの大きな考え方について示す。

BEST では、細かなスケジュールを入力可能とするために、

- ①年間スケジュール(年間スケジュールモード)
- ②週間スケジュール(平日モード・休日モード・その他モード)
- ③時刻変動スケジュール(任意時間におけるスケジュール値)
- の3つを組み合わせてスケジュールを設定する方式としている。

即ち、『〇月〇日~〇月〇日の平日(又は休日・その他)の〇時のスケジュール値は〇である』といった考え方で入力することになる(図 2-7 を参照)。

年間スケジュールに、「平日・休日・その他モードスケジュール」がある、詳細は「2.2.8」を参照。

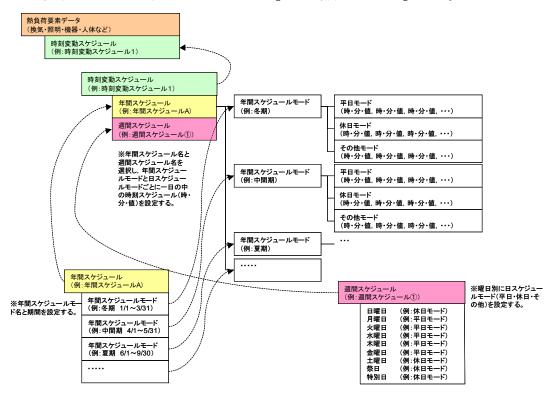


図 2-7 年間・週間・時刻変動スケジュールデータの関連

2.2.6. 年間スケジュール

図 2-8 に年間スケジュール入力画面を示す。

年間スケジュールは、季節変動を日付で指定するもので、例えば、建築計算結果の出力スケジュールや、内部発熱係数のスケジュールなどがある。スケジュールモードとその終了月日をセットで入力する。年間スケジュールの種類によっては、スケジュールモード名が決められている場合もある。

①建築計算結果の出力期間

各時間ステップあるいは、1 時間間隔値の出力期間を指定したい場合に用意する。スケジュールモード名は、出力する期間に対して「on」、出力しない期間に対して「off」を入力する。(「2.3.12 建築計算のデータ保存」を参照)

2内部発熱係数の期間変動

内部発熱係数とは、内部発熱を、期間別に割増し・割引きを行う為の係数で、最大負荷計算の場合などに利用する。スケジュールモード名には、内部発熱係数を「0.5」、「1.2」などの実数で入力する。

③外壁用条件スケジュール(外壁入力用)

外壁の入力画面にて、外壁外側温度を年間スケジュールで指定することができる。年間スケジュールを指定する場合には、○月○日までは○℃といった入力を行う。

※外壁入力にて地中外壁を入力する際には、月毎の地中温度を年間スケジュールにて設定し、外壁入力画面にて参照するといった使い方が想定される。

図 2-8. 年間スケジュール入力画面

4 自然換気の期間

自然換気の計算用に、自然換気期間を設定したいときは、自然換気を許可する期間に対して「1」、 許可しない期間に対して「0」を入力する。

ポイント 8 内部発熱係数とは

内部発熱係数とは、季節により内部発熱の割増し・割引きを行う補正係数のことで、年間スケジュールで係数値を設定します。

照明点灯率をはじめとする内部発熱の時刻変動は、年間計算用の平均的な値を仮定し、これに内部発熱係数を乗じて設計条件にすることができます。年間計算用の冷房、暖房期間に、それぞれ冷房設計用、暖房設計用の内部発熱係数の値を、中間期には 1.0 など任意の値を設定すれば、通常、最大負荷計算において問題はありません。

また、BEST1204では、最大熱負荷計算と年間熱負荷計算で内部発熱係数を使い分ける機能が追加されました。詳しくは、p.92の「2.6.9 照明」及びポイント 18 をご覧下さい。

ポイント 9 年間スケジュール入力上の注意点

年間スケジュールの入力では、12/31の入力は必須です。

便利な機能 3 スケジュールデータの編集方法

既に作成した年間スケジュールデータをコピー・修正して作成することもできます。ワークスペースに表示されるコピー元の年間スケジュール名を選択し右クリックし、「コピー」を選ぶと、コピーできます。

作成したデータのスケジュール名を変更したい場合は、ワークスペースに表示される年間スケジュール名を選択し右クリックし、「名称変更」を選んで下さい。名称変更すると、それを引用する他の画面のスケジュール名も自動的に変更されます。

2.2.7. 衣替えスケジュール

図 2-9 に衣替えスケジュール入力画面を示す。

衣替えスケジュールは、夏期・冬期・中間期の設定であり、在室者の着衣量、代謝量の季節変動を 考慮するために必要となる。

例えば以下のように設定する場合、

- ·冬 期:1/1~3/31、12/1~12/31
- ・中間期:4/1~5/31、10/1~11/30
- •夏 期:6/1~9/30

それぞれの期間の終わりの日を入力し、プルダウンメニューより季節を選択する(3/31までを冬期、5/31までを中間期、9/30までを夏期、11/30までを中間期、12/31までを冬期)。

この入力は、各季節における、着衣量・代謝量の計算に使用される。即ち、時刻変動スケジュール から参照されることはない。

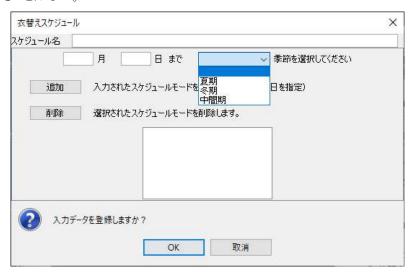


図 2-9. 衣替えスケジュール入力画面

2.2.8. 平日・休日・その他モードスケジュール

図 2-10 に平日・休日・その他モードスケジュール入力画面を示す。 スケジュールモードは、以下の4つより選択する。

曜日別モード・・・週間スケジュールで設定した曜日別モードとする場合

平日モード・・・週間スケジュールで設定した平日モードとする場合

休日モード・・・週間スケジュールで設定した休日モードとする場合

その他モード・・・週間スケジュールで設定したその他モードとする場合

例えば、7/20~8/31は、その他モード(夏休みモードと想定)とする場合には、

7/19 日まで:曜日別モード、8/31 まで:その他モード、12/31 まで曜日別モード といった入力をすればよい。

図 2-10 平日・休日・その他モードスケジュール入力画面

2.2.9. 週間スケジュール

図 2-11 に週間スケジュール入力画面を示す。

気象データにて設定されている曜日・祭日、ユーザーが設定する特別休日(「2.2.4 特別休日」を参照)毎に、時刻変動スケジュールのモード(平日モード・休日モード・その他モード)を設定する。連休明け(休日モードが 2 日以上続いた翌日)の日に対してモード設定することもできる。例えば、連休明けに空調を早めに開始したい場合などは、連休明けにその他モード、他の日は休日モードか平日モードを指定すればよい。

期間別にモードを指定したい場合には、「2.2.8 平日・休日・その他モードスケジュール」にて設定した期間別モード名を選択する。

最大熱負荷計算あるいは月代表日計算の場合は、計算上は常時平日モードが仮定される。しかし、 週間スケジュールの設定を省略することはできないので、デフォルト値のままのデータ設定を行うか、 あるいは年間熱負荷計算用データとしての併用や転用が考えられる場合には、年間熱負荷計算用 の条件設定をするとよい。

図 2-11. 週間スケジュール入力画面

2.2.10. 時刻変動スケジュール

時刻変動スケジュールとして入力すべきスケジュールの例は以下の通りである。

BEST では、任意時刻におけるスケジュール値を入力し、その補間方法を選択することで時刻変動 スケジュールを入力することが可能である。

- ① 建築計算時間間隔スケジュール
- ② 解法設定用空調スケジュール
- ③ 照明スケジュール
- ④ 機器スケジュール
- ⑤ 人体スケジュール
- ⑥ ブラインドスケジュール
- (7) 空調スケジュール
- ⑦'室温設定
- ⑧ 外気導入スケジュール
- ⑨ 隙間風変動率スケジュール
- ⑩ ゾーン間換気変動率スケジュール
- ① AFW 運転スケジュール
- (12) 自然換気スケジュール

①~⑦、⑧、⑫のスケジュールについては、マスターの時刻変動スケジュール内にそれぞれのスケジュールのデフォルトが用意されている。それ以外のスケジュールについては、マスターの同じ場所に用意されている「折線状変化のスケジュール」、「階段状変化のスケジュール」を利用して設定する。「折線状変化のスケジュール」、「階段状変化のスケジュール」のスケジュール値は、0以上の実数で入力する。

◆時刻変動スケジュール入力における注意事項

変動タイプを①折線状補間、②階段状補間から選択する必要があるが、

折線状補間の場合は、任意時刻におけるスケジュール値を入力すると、自動的に補完される。よって、0:00 と 24:00 の入力が必須である。

階段状補間の場合は、終了時刻とスケジュール値を入力する。よって、24:00 の入力が必須である。

◆時刻変動スケジュール入力における年間スケジュール入力方法

年間スケジュール名と年間スケジュールモード名は、時刻変動スケジュールを季節や期間によって変えたい場合に入力するものである。

例えば、季節によって空調の予冷熱時間を変えた入力なども可能である。

この入力を省略した場合は、時刻変動スケジュールは季節変化しないものと仮定される。

入力方法を2.2.10時刻変動スケジュールの最後に記載する。

年間スケジュール名、年間スケジュールモード名は、通常入力不要です。季節によって時刻変動スケジュールを変えたい場合に入力します。

便利な機能 5 時刻変動スケジュールの入力

再表示・並び替えボタンを押すと、以下が実行されます(入力が容易です)。

- ① 再表示機能・・・1000 と入力した時刻を 10:00 のように「:」を追加して再表示する。
- ②並替え機能・・・・時刻を前後して入力しても、時刻順に並び替えて再表示する。

ポイント 10 時刻変動スケジュール入力における注意事項

変動タイプは、折線状補間と階段状補間の2種類があります。

照明、機器、人体スケジュールは折線状補間が一般的ですが、階段状補間を選ぶこともできます。 これに対して、計算時間間隔、解法設定用空調、空調、外気導入は階段状補間だけが有効です (誤って折線状補間を選択しても無視され、階段状補間が仮定されます)。

階段状補間の場合は、時・分の入力値は、スケジュール値が適用される最終時刻としてください。 24:00 のスケジュール値は、必ず入力してください。階段状補間のデータは、0:00 のスケジュール 値の入力は不要です。

折れ線変化の場合、0:00 のスケジュール値入力を省略すると、スケジュール値 0 が仮定されますので、注意してください。

年間、週間スケジュールと同様に、スケジュールデータ一式のコピーやスケジュール名変更が可能です。

①建築計算時間間隔スケジュール

図 2-12 に建築計算時間間隔スケジュールの入力画面を示す。

建築計算時間間隔は、「2.3.1 計算時間間隔」の入力で参照されるスケジュールである。

例えば、非空調時は60分間隔、空調時は5分間隔で計算するといった入力を行う。

非連成用と連成用のデータを区別して用意する。非連成用とは、熱負荷計算用のことで、計算時間間隔は、空調発停や急激な外乱変動が起きるときを除き、基本的に 60 分間隔に設定してよい。連成用とは、エネルギー計算用のことで、データ作成を省略することもできる。エネルギー計算の演算時間の短縮を図るために解法の切換えと計算時間間隔の変動設定を行う場合に、解法設定用空調スケジュールとセットで、データを用意する。

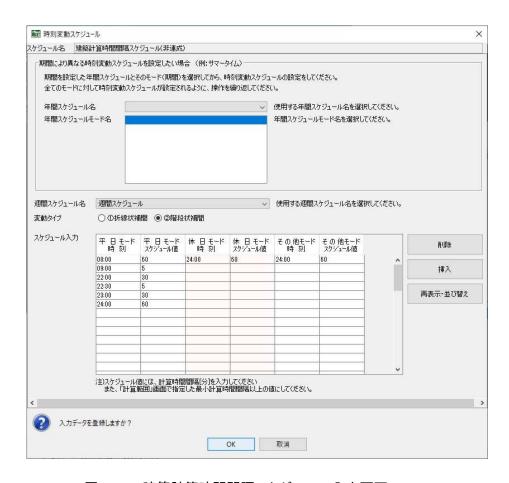


図 2-12. 建築計算時間間隔スケジュール入力画面

注意事項は以下の通り。

(非連成用・連成用共通)

- ・建築計算時間間隔[分]は 60 の約数のうち、「2.2.3 計算内容」で入力した最小計算時間間隔 の倍数の整数で入力する。
- ・ 毎時 0 分は必ず計算するように時間間隔スケジュールを設定する

(非連成用)

・ 基本的に 60 分間隔で十分なことが多い。ただし、空調開始直前と空調停止直後は 5 分間隔程度にするとよい。

(連成用)

- ・1ゾーンでも空調する時間帯の建築計算時間間隔は、「2.2.3 計算内容」で入力した最小計算時間間隔と一致させなければならない。全ゾーンが非空調の時間帯は、基本的に 60 分間隔でよい。ただし、空調終了直後は5分間隔程度にする。
- ・データ設定を省略すると、常に最小計算時間間隔を用いた計算がされる。このとき、解法設定 用空調スケジュールのデータは無視され、常にエクスプリシット法が仮定される。

ポイント 11 建築計算時間間隔と解法設定用空調スケジュール

「建築計算時間間隔」、「解法設定用空調」スケジュールは、BEST 特有のデータです。

非連成(熱負荷)計算は、解法としてインプリシット法が自動選択されます。インプリシット法は、外乱や空調熱量の変動を各時間ステップの値を結ぶ折れ線変動と仮定します。そのため、空調や大きな発熱機器の稼働直前・停止直後などの急激な変動が起きる時間帯は、計算時間間隔を細かく設定することにより、外乱変動の特徴をより正確に再現できます。その他の時間帯は、基本的に計算時間間隔を短く設定する必要はなく、外乱データの間隔に合わせて 60 分あるいは 30 分の間隔とすることができます。

連成(エネルギー)計算では、建築と設備を連成させて解く空調時間帯は、連成に適する解法であるエクスプリシット法を用いるように設定します。この解法は、計算精度を保つために 5 分間隔程度の短い計算時間間隔が必要となります。非空調時間帯は、インプリシット、エクスプリシットのどちらの解法を用いてもよく、インプリシット法を用いる時間帯は計算時間間隔を長く設定でき、効率的な計算が可能となります。この解法切換えは、解法設定用空調スケジュールで設定できます。適切な解法と計算時間間隔の組合せが重要といえますが、単純なデータ設定とするために、エクスプリシット法を用いる時間帯を長めに設定し、平日は最小計算時間間隔でエクスプリシット法、休日は 60 分間隔でインプリシット法とする方法もあります。

2解法設定用空調スケジュール

図 2-13 に解法設定用空調スケジュールの入力画面を示す。

解法設定用空調スケジュールは、「2.3.1 計算時間間隔」の入力で参照されるスケジュールである。 連成計算において、空調時間帯に適する解法(エクスプリシット法)と非空調時間帯に適する解法(インプリシット法)の切り換えを設定するためのスケジュールであるが、データ作成を省略することもできる。演算時間短縮を図りたい場合に、連成用建築計算時間間隔スケジュールとセットでデータを用意する。

1 ゾーンでも空調するゾーンがある時間帯は、必ず「1」(エクスプリシット法で解く)を入力する。全てのゾーンが非空調の時間帯は、「0」(インプリシット法で解く)あるいは「1」を入力する。「0」を入力した時間帯は、建築計算時間間隔を長く設定できるので演算時間の短縮を図れる。

注意事項は以下のとおり。

・解法設定用空調スケジュールと連成用の建築計算時間間隔スケジュールは、次の関係となるようにする。解法設定用空調スケジュール値を「1」と設定した時間帯は、建築計算時間間隔スケジュール値を必ず最小時間間隔とする。解法設定用空調スケジュール値を「0」と設定した時間帯の建築計算時間間隔のスケジュール値は、空調終了直後を除き 60 分程度の長めの時間間隔とする。空調終了直後は、5 分間隔程度の短い時間間隔とする。

データ設定を省略すると、常にエクスプリシット法を用いた計算がされる。このとき、連成用の 建築計算時間間隔スケジュールのデータは無視され、常に最小時間間隔を用いた計算がさ れる。

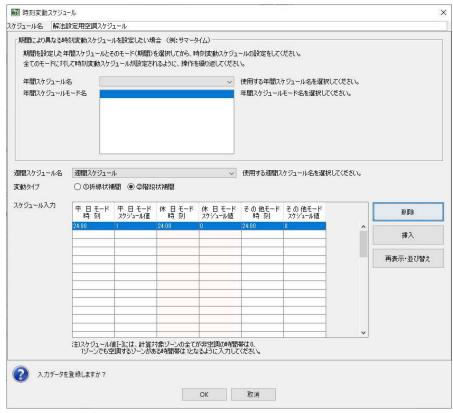


図 2-13. 解法設定用空調スケジュール入力画面

3 照明

図 2-14 に照明スケジュールの入力画面を示す。

照明の内部発熱の計算にて参照されるスケジュールである。

0~100%を0~1の値としてスケジュール値入力する。

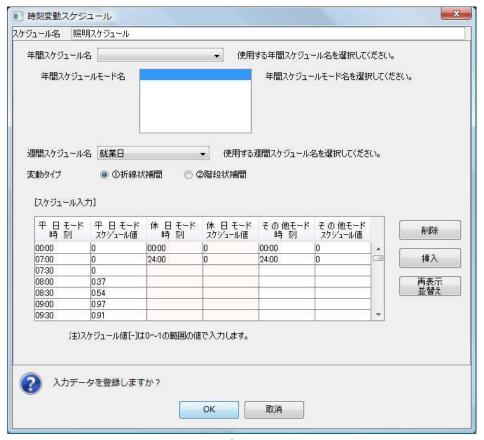


図 2-14. 照明スケジュール入力画面

4機器

図 2-15 に機器スケジュールの入力画面を示す。

機器の内部発熱の計算にて参照されるスケジュールである。

0~100%を0~1の値としてスケジュール値入力する。

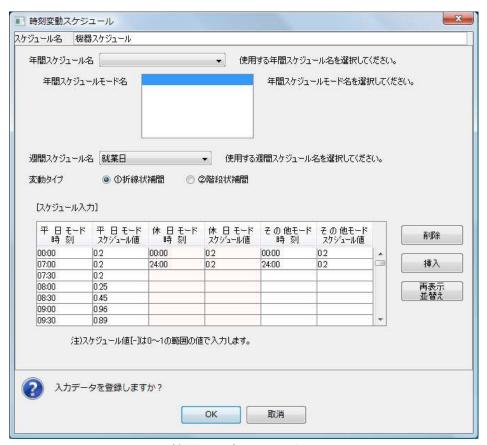


図 2-15. 機器スケジュール入力画面

5人体

図 2-16 に人体スケジュールの入力画面を示す。 内部発熱の計算にて参照されるスケジュールである。 0%~100%を0~1 の値をスケジュール値として入力する。

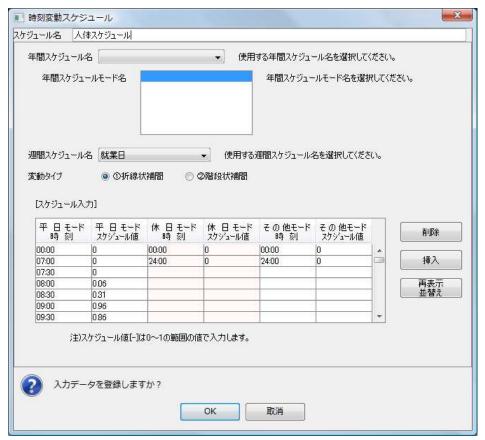


図 2-16. 人体スケジュール入力画面

6プラインド

図 2-17 にブラインドスケジュールの入力画面を示す。

ブラインドの使用率入力によるスケジュールである。

注意事項は次の通り。

- ・ブラインドスケジュールを用意するのは、「2.6.6 窓・昼光」のブラインドの操作方法の項目で④ スケジュール、⑤スラット角の自動制御を選択した場合である。
- ・ブラインド非使用時は 0、ブラインド 100%使用時は 1 として、0~1 の値をスケジュール値として 入力する。ただし、1 を超える値を入力することも可能で、この値が設定された時間帯は、ガラス透過日射量の強さで、使用率を 0 あるいは 1 に自動決定する(「2.6.6 窓・昼光」を参照)。

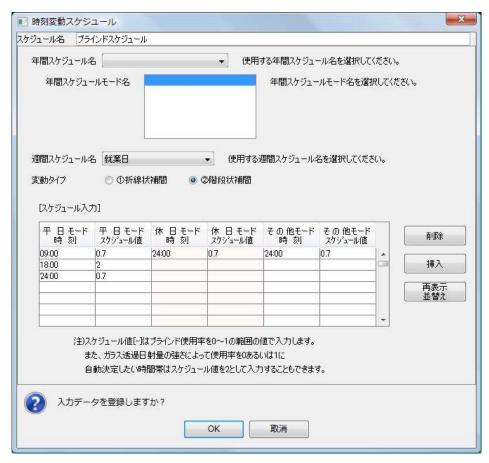


図 2-17. ブラインドスケジュール入力画面

7空調

図 2-18 に空調スケジュールの入力画面を示す。

建築単独計算の際に参照されるスケジュールであり、連成計算を行う際には入力不要である。この入力画面では建築単独計算時の空調の運転・停止の時刻変動スケジュール入力を行う。スケジュール名は例えば「空調」運転」などとし、平日の空調運転時間帯を8:00~22:00、休日、その他は非空調とする場合は、図2-18のようにスケジュール値を空調時間帯=「1」あるいは「2」、非空調時間帯=「0」として入力する。最大負荷計算の場合、予冷熱時間帯=「2」と解釈して計算される。(即ち、最大熱負荷計算の場合:8時~予冷熱、9~20時に空調の場合は、8:00=0、9:00=2、20:00=1、24:00=0と入力すればよい。年間計算の場合は、予冷熱(2)、空調(1)の区別はされず、いずれも空調時間帯と認識される。予冷熱時間帯の外気導入を行わない場合は、外気導入の時刻変動スケジュールを用いて設定する。)また、予冷熱中に日付が変わってはならない。

最初に選択する「年間スケジュール名」、「年間スケジュールモード名」は、年間同じならばブランクでよい。週間スケジュールは同様に任意のものを選択する。季節や期間によって時刻変動スケジュールを変えたい場合の入力方法は p.46「◆時刻変動スケジュール入力における年間スケジュールの入力方法」を参照。中間期などで空調しない期間を考慮したい場合は、例えば年間スケジュールモード名を「空調」停止」などとして、図 2-18 の平日モード欄を「24:00 0」と変更したスケジュールデータを用意すればよい。

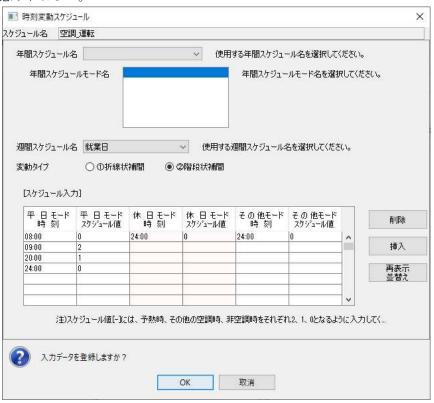


図 2-18. 空調スケジュール入力画面

ポイント 12 予冷熱時間の設定における注意事項

空調スケジュールでは、予冷熱時間の指定ができ、最大熱負荷計算のときに適用されます。BEST の最大熱負荷計算は、従来と異なり、気象学上発生し得る設計用気象データを利用します。予冷熱時間も、1 時間という既成概念を捨てて、より短く設定できます。BEST の最大熱負荷計算での予冷熱時間は、従来のように長めの設定にするのではなく、休み明け以外の日に、現実に使われる予冷熱時間を設定することを推奨します。ただし、実際の運転では、休み明けには設定室温に達するまでにさらに時間を要するので、予冷熱時間を延ばすなどの考慮が必要です。

⑦'室温設定

図 2-19 に室温設定スケジュールの入力画面を示す。

「階段状変化のスケジュール」で設定するのが標準であるが、「折線状変化のスケジュール」で設定してもよい。

BEST1204 より新たに追加された機能で、設定室温の時刻変動の設定が可能となった。なお、時刻変動が無い場合は、「2.3.10 非連成計算 空調運転モード」にて、設定室温の設定を行うため、入力不要である。また、建築単独計算の際に参照されるスケジュールであり、連成計算を行う際には入力不要である。

この入力画面では建築単独計算時の設定室温の時刻変動スケジュールの入力を行う。スケジュール値は 0 以上の実数で入力する。

スケジュール名は例えば「室温設定」夏期」などとし、夏期の平日の設定室温を就業時(~18:00)と 残業時(18:00~)で変動させたい場合、図 2-19 のようにスケジュール値を就業時=26、残業時=28、 と入力すればよい。なお、空調時間の設定を前出の図 2-18 とすると、8:00~18:00 は 26℃設定、 18:00~20:00 は 28℃設定で空調が行われる。同様に中間期、冬期の設定も行えば、「2.3.11 非連 成計算 空調運転モードスケジュール」で設定した期間スケジュールに基づき設定室温の時刻変動 を設定できる。

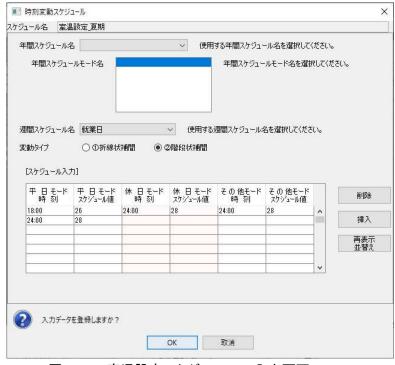


図 2-19. 室温設定スケジュールの入力画面

8外気導入

図 2-20 に外気導入スケジュールの入力画面を示す。

建築単独計算の際に参照されるスケジュールであり、連成計算を行う際には入力不要である。

この入力画面では建築単独計算時の外気導入の有無の時刻変動スケジュール入力を行う。

スケジュール名は例えば「外気導入」有」などとし、平日の外気導入時間帯を8:00~22:00、休日、その他は外気非導入とする場合は、図 2-20 のようにスケジュール値を外気導入時間帯=「1」、外気非導入時間帯=「0」として入力する。

最初に選択する「年間スケジュール名」、「年間スケジュールモード名」は、年間同じならばブランクでよい。週間スケジュールは同様に任意のものを選択する。季節や期間によって時刻変動スケジュールを変えたい場合の入力方法は p.46「◆時刻変動スケジュール入力における年間スケジュールの入力方法」を参照。

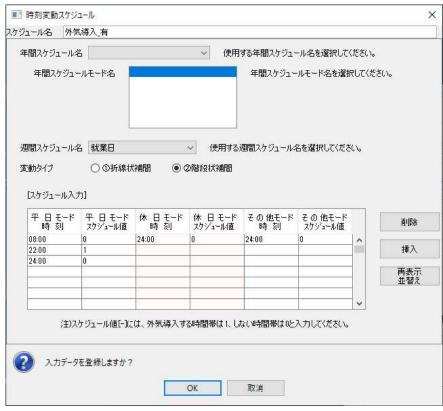


図 2-20. 外気導入スケジュール入力画面

9隙間風変動率

「隙間風」の計算法の項目で、「③スケジュール」、「④スケジュール+室内外圧考慮」を選択した場合に必要となる。換気回数に乗じて使用する変動率(0~1)[-]をスケジュール値として入力する。 「階段状変化のスケジュール」で設定するのが標準であるが、「折線状変化のスケジュール」で設定してもよい。

⑩ゾーン間換気変動率

「2.6.8 ゾーン間換気」の計算法の項目で、「③スケジュール」を選択した場合に必要となる。ゾーン間換気量入力値に対する変動率(0~1)[-]をスケジュール値として入力する。

「階段状変化のスケジュール」で設定するのが標準であるが、「折線状変化のスケジュール」で設定してもよい。

①AFW 運転スケジュール

窓として AFW を選択したとき、特に AFW の運転時間帯を設定したい場合に使用する。 AFW の運転時間帯は「1」、非運転時間帯は「0」をスケジュール値として入力する。 入力を省略した場合は、空調換気時間帯に運転を行うと仮定される。 「階段状変化のスケジュール」で設定する。

12自然換気スケジュール

図 2-21 に自然換気スケジュールの入力画面を示す。

自然換気の計算を行う際に自然換気時間帯を設定したい場合に必要となる。スケジュール値は、 自然換気の許可時間帯=「1」、不許可時間帯=「0」として入力する。

また、自然換気許可時間帯を 2 つのモードに区別して設定することも可能で(例えば、空調時間帯と非空調時間帯で自然換気許可条件を変えたい場合等)、その場合は、許可時間帯(通常モード) =「1」、許可時間帯(夜間等モード)=「2」、不許可時間帯=「0」と入力する。ここに、空調時間帯を「通常モード」、非空調時間帯を「夜間等モード」と呼んで区別している。

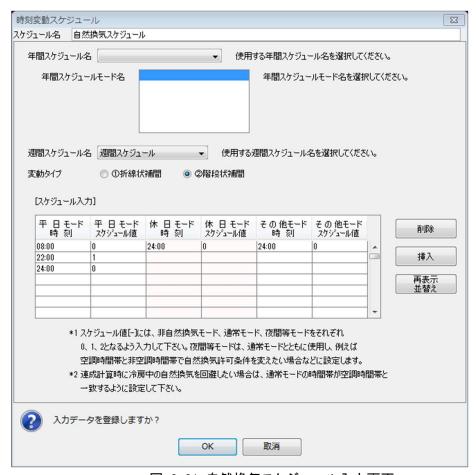
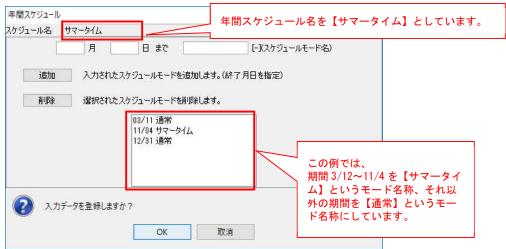
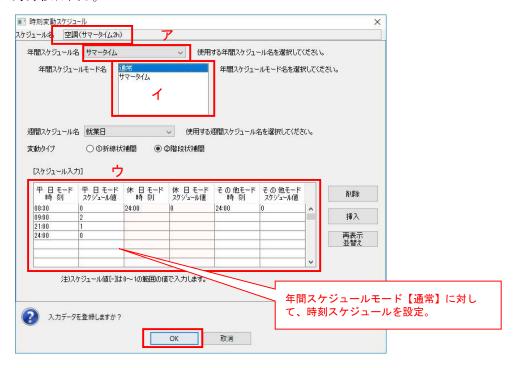



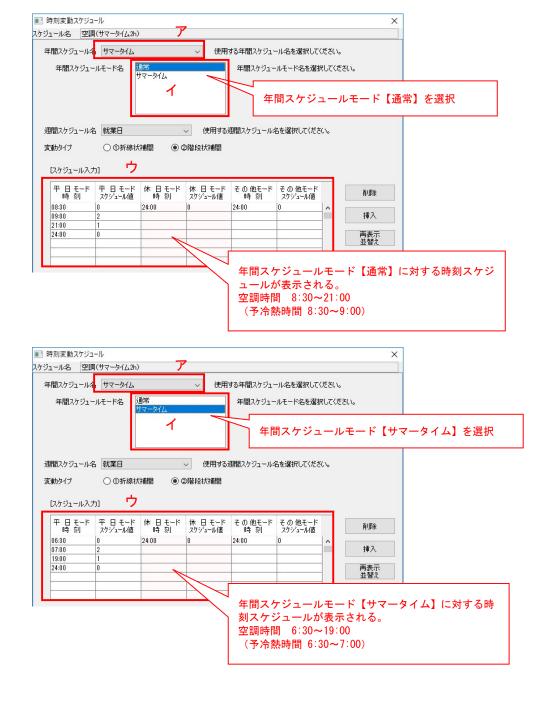
図 2-21 自然換気スケジュール入力画面


◆時刻変動スケジュール入力における年間スケジュールの入力方法

サマータイム期間の設定を例に、入力方法を説明する。

まず、年間スケジュールで、季節や期間ごとの名称(スケジュールモード)を入力する。

次に、時刻変動スケジュールで、上記で設定したモード毎に時刻スケジュールを入力する。手順を以下に示す。参考に示している画面は「空調スケジュール」である。他の時刻変動スケジュールも入力方法は同じ。



- 手順①:(ア)に、年間スケジュールで設定したスケジュール名を選択すると、(イ)に年間スケジュールで設定したモード名が表示される。
- 手順②:(イ)において、特定のモード名(上図では「通常」)を選択した状態で、(ウ)の時刻スケジュールを入力して、OKして画面を閉じる(OKをクリックしないと入力が確定しない)。
- 手順③: 再び、同じ時刻スケジュール(上図では「空調(サマータイム)」)を開いて、(イ)において、②とは違うモード(上図では「サマータイム」)を選択した状態で、(ウ)の時刻スケジュールを入力(上書き)して、OKして画面を閉じる。

ここで、②とは違うモードを選択した時に、デフォルトで以前の入力値(②の時の値)が表示されるが、これに上書きする。②で入力した時刻スケジュールは②で選択したモードとして保存されているので、上書きしても消えないで残っている。

手順④:同様の方法で、(イ)のモードの数だけ(年間スケジュールで設定したモードの数だけ)、時刻スケジュールを入力する。

手順②~④の入力と行うと、一つの時刻変動スケジュール名 (上の例では「空調(サマータイム)」)に対して、モードの数だけ時刻スケジュールが設定される。入力済みの画面を開いて、(イ)のモードを選択するとモード毎に異なる時刻スケジュールが設定できていることが確認できる(下図はモードを2つだけ設定した例)。

2.3. 建築 基本

2.3.1. 計算時間間隔

図 2-22 に計算時間間隔の入力画面を示す。

計算時間間隔とは建築の計算時間間隔を示していて、熱負荷計算のときに使用する非連成用とエネルギー計算のときに使用する連成用を区別して設定する。連成用には、解法設定用空調スケジュールも設定する。これらは、「2.2.10時刻変動スケジュール」の「①建築計算時間間隔スケジュール」、「②解法設定用空調スケジュール」の説明に従い作成するスケジュールである。

連成用の計算時間間隔と解法設定用空調のスケジュールは入力を省略することもでき、その場合、常に最小時間間隔を用いるエクスプリシット法の計算が仮定される。連成計算の演算時間の短縮を図りたい場合に設定すればよい。

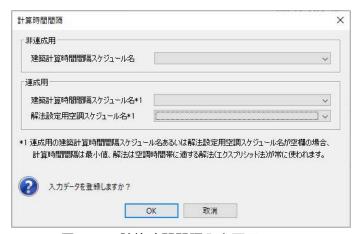


図 2-22. 計算時間間隔入力画面

2.3.2. 軒高など

図 2-23 に軒高などの入力画面を示す。

この画面では、「軒高」と「地表面反射率」の入力を行う。

「軒高」は、隙間風風量の計算(「2.6.12 隙間風」)で、「②換気回数法+室内外差圧考慮」、「④スケジュール+室内外差圧考慮」、「⑤外壁漏気係数法」を選択した場合に使用される。この場合は、軒高入力を省略することはできない。

「地表面反射率」は、ここで入力した値が計算に使用される。外表面の方位毎で地表面反射率の値を変更したい場合は、「2.3.7 外表面」でそれぞれ地表面反射率を入力することもできる。

特別な場合を除けば、この画面にて地表面反射率を入力し、外表面では入力を省略すればよい。

図 2-23. 軒高など入力画面

2.3.3. 壁体構造

図 2-24 に壁体構造の入力画面を示す。

「壁タイプ」は、「外壁」・「屋根」・「内壁」・「床」・「天井」・「地中壁」より選択するが、これらは熱伝達率 (室内側総合熱伝達率=9W/m² K、屋外側総合熱伝達率=23W/m² K)の設定や、窓からの日射による熱取得のうち放射成分が吸収される部位を特定するために使用される。

壁タイプごとに代表的な壁体構造のデフォルトを準備しているが、これを適宜修正することで簡単に入力することが可能である。部材構成の欄には、室内側より順に入力する。ダブルスキン建築に対しては、インナースキンに壁がある場合、インナースキンの壁について壁体構造データを作成する。その際、壁タイプは「内壁」を選択する。

ユーザ定義の壁体データベースを登録した場合は、ライブラリにユーザ定義 DB 名称が現れるので、これを適宜利用することが可能である。ユーザ定義の壁体データベースについては、「2.9 ユーザ 定義の壁体データベースの利用方法」を参照。

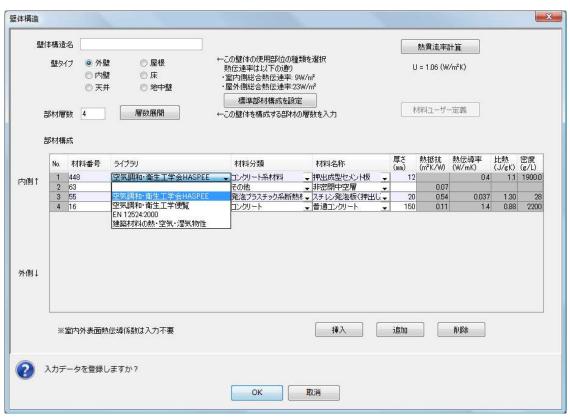


図 2-24. 壁体構造入力画面

ポイント 13 壁体構造入力における壁タイプについて

壁タイプの「床」、「天井」は、中間階の場合を指します。1 階床の場合は、「地中壁」を選んで下さい。ピロティ床の場合は「外壁」を選んでください。壁タイプに応じて、外側総合熱伝達率が仮定されます。

便利な機能 6 壁体構造入力における標準部材構成

予め登録された標準部材構成を利用するときは、壁タイプを選択した後、標準部材構成設定ボタンを押すと、標準部材構成が表示されます。

便利な機能 7 壁体構造入力における部材の編集

部材を追加したいときには、追加する位置の No.を選択した後、追加ボタンをクリックすると、行が追加されます。部材を削除したいときは、削除したい No.を選択した後、削除ボタンをクリックします。ライブラリ、材料分類、材料名称の表示欄の幅は、上段項目名表示欄の枠にカーソルを合わせると、調整できます。

便利な機能 8 壁体材料データベース(試して学ぶ熱負荷 HASPEE)

BEST1209 から、『試して学ぶ熱負荷 HASPEE(ハスピー)~新最大熱負荷計算法~(空気調和・衛生工学発行)』に掲載されている「材料の熱定数表」が追加されました。近年、実務で使用される材料(押出成型セメント板、ケイ酸カルシウム板、ノンフロン発泡系断熱材など)が盛り込まれ、物性値についても見直しが行われています。

2.3.4. 外部形状

庇やルーバなどの外部日除けがある場合は「2.3.5 外部形状_日除け」、ダブルスキンファサードの場合は「2.3.6 外部形状」ダブルスキン」に述べる方法で入力する。

2.3.5. 外部形状 日除け

図 2-25 に外部日除けの入力画面を示す。

ここで入力されたデータは、熱負荷計算及び昼光利用計算にて使用される。

外部日除けは、現在のところ、鉛直な外表面に取り付けられたもののみを計算対象としている (「2.3.7 外表面」を参照)。外部日除けがない場合は入力が省略可能。

熱負荷計算のみの利用であれば、外部日除け形状は X~D の単位を合せておけば計算上問題ないが、昼光計算でも使用されるため、単位は m としておく必要がある。

入力上の注意点として、窓の直上に水平庇があるときには Y1=0、窓のすぐ横に垂直フィンがあると きには X1=X3=0 として入力する。

窓が複数あるときの入力の考え方は、熱計算において窓面日照面積比率(窓の全面積に対して直達日射のあたる面積の割合)を求めるための入力であるので、窓対庇の関係において(厳密には面対面の形態係数)同等と見なせるときは代表的なもの一つを入力するだけでいいし、同一方位面でも別形状の窓対庇の関係があるならば、それぞれ独立に外部日除け入力を行うことになる。

外部日除けは、「2.3.7外表面」、「2.6.6窓・昼光」で参照される。

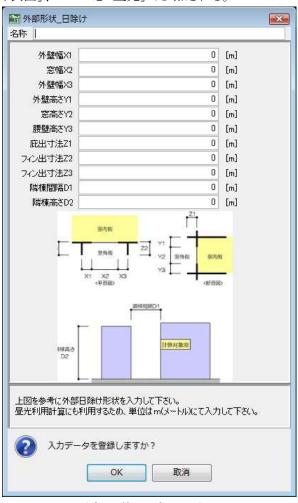


図 2-25. 外部形状_日除け入力画面

2.3.6. 外部形状 ダブルスキン

図 2-26 に外部形状 ダブルスキンの入力画面を示す。ダブルスキン建築に対しては、本画面で、 アウタースキンのガラス、インナースキンのガラスとダブルスキン側に付属するブラインドの仕様、ダ ブルスキンの奥行や吹抜け層数、ダブルスキン自然換気条件を設定する。多層吹抜けダブルスキ ンの場合、各階のガラス、ブラインド、壁条件は、計算上同一と仮定される。自然換気は、ダブルス キン単独で行うものとし、ダブルスキンを経由して居室の自然換気を行う場合は計算対象にしない。 ダブルスキン名は、「外部形状」日除け」データに同じ名称がないように設定する。上部壁高さ、窓高 さ、腰壁高さは、基準階インナースキンの窓のある部分の断面寸法を入力する。内窓面積率は、イ ンナースキンの窓が連窓の場合は入力不要であり、ポツ窓の場合に、インナースキンの全表面積 に対するインナースキン窓面積の比率を入力する。ガラスのライブラリ BESTwindowSystemDB2013 は、ダブルスキンと AFW の共用ライブラリであり、窓タイプは、通常、内外とも単層、内側複層(空気 層 6mm)、内側複層(空気層 12mm)から選択する。外側複層ガラスは、主に AFW に使用される。 「ブラインド」の「操作方法」や昼光計算に関する補足説明は、「2.6.6 窓・昼光」に記載されている。換 気口の有効開口面積は、ダブルスキンの単位幅あたりの面積を入力する。デフォルトの 0.04 m²/m とは、流量係数を0.2 と仮定すると、高さ20cmのスリット状の換気口を想定していることになる。多層 吹抜けダブルスキンの場合に、換気口開閉法の「設定温度(固定)以上で開」、「設定温度(スケジュ ール)以上で開」を選択すると、最上層のダブルスキン空気温度が設定温度以上のときに換気口を 開放すると仮定される。 結果出力として「各時間ステップの出力」あるいは「1 時間間隔の出力」を選 択すると、Result フォルダーに bestDsfU.csv あるいは bestDsfH.csv という名称のファイルが出力さ れる。ファイルの内容は、「2.7.5ダブルスキンに関する結果出力ファイル」に説明されている。

ダブルスキンの熱性能を決める入力項目の設定を済ませたうえで、「熱性能」の部分の換気量を 入力すると、換気時と非換気時のダブルスキン(ただレインナースキンは全面ガラスの場合)の熱貫 流率と日射熱取得率が表示され、参考情報として利用できる。

ダブルスキンの計算法は、参考文献1、2、3を参照。

.

 $^{^1}$ 郡、石野、長井、村上: 外皮・躯体と設備・機器の総合エネルギーシミュレーションツール「BEST」の開発(その 116) BEST への高性能窓システム新計算法の導入、空気調和・衛生工学会学術講演論文集、pp.17・20、2013.9

 $^{^2}$ 郡、石野、長井、村上:建築エネルギー・環境シミュレーションツール BEST の開発 第 47 報 ダブルスキン自然換気の調整法とその効果、日本建築学会大会学術講演梗概集、D-2、2014.9

 $^{^3}$ 郡、石野:熱負荷計算のための窓性能値に関する研究 第 3 報 ダブルスキン、エアフローウィンドウの熱性能式の提案、日本建築 学会環境系論文集 No.682、pp.997·1002、2012.12



図 2-26. 外部形状 ダブルスキン入力画面

図 2-27.ダブルスキン入力項目の詳細説明

2.3.7. 外表面

図 2-28 に外表面の入力画面を示す。

ここでは、外壁・屋根などの方位角(-360° $\sim 360^{\circ}$)と傾斜角(0° $\sim 180^{\circ}$)を入力する。入力方法は以下のとおり。

·方位角 : 南=0°、西=90°(-270°)、東=270°(-90°)、北=180°(-180°)

•傾斜角 : 一般的な外壁面(鉛直壁) = 90°、水平屋根 = 0°、ピロティ床 = 180°

(外部日除けの計算は、傾斜角90°のときのみ可能である。)

「2.3.4 外部形状」で外部日除けやダブルスキンに関する入力を行った場合には、外部形状の項目でその日除け名あるいはダブルスキン名を選択する。特別な外部形状ではない場合、選択する必要はない。

外表面毎に違う地表面反射率の値を設定したい場合は、ここでそれぞれの地表面反射率の入力を 行う。

入力を省略した場合は、「2.3.2 軒高など」で入力した地表面反射率で計算される。

図 2-28. 外表面入力画面

2.3.8. 自然換気制御

図 2-29 に、自然換気制御の入力画面を示す。「自然換気制御名」は必須入力であり、識別できる名称を入力する。自然換気スケジュールは自然換気する期間や時間帯を指定するもので、事前に年間スケジュールや時刻変動スケジュールのデータを用意しておく。年間スケジュールと時刻変動スケジュールの両方を設定すると、両方のスケジュールが「自然換気許可」のときに自然換気を行う。時刻変動スケジュール入力の際に、自然換気の通常モードと夜間等モードの時間帯を区別しておくと、本画面の通常、夜間等のモード別自然換気許可条件が有効となる。スケジュールの設定を省略すると、常に自然換気を許可する(通常モード)と仮定される。

年間スケジュール入力画面の入力例を図 2-30 に示す。時刻変動スケジュール入力画面は前述の 図 2-21 を参照されたい。

自然換気許可条件にはデフォルト値が設定されているので、使用しない場合は空欄にしたり、設定し直したりする。「下限外気温度」、「上限外気露点温度」、「下限室温」は、通常、夜間等の2モードの条件を設定できる。前述のように、自然換気の時刻変動スケジュールで設定した、通常モード「1」の時間帯に「通常」の条件、夜間等モード「2」の時間帯に「夜間等」の条件が適用される。「夜間等」の欄を空欄にすると、「通常」の欄の設定と同じと仮定される。

空調中の自然換気に関しては、非連成計算用と連成計算用とで別々に設定する。非連成計算に対しては、冷房中の自然換気を許可するかしないかを選択すればよい。冷房中の自然換気を許可しないときの計算上の扱いは、自然換気のみでは室温を冷房設定値まで下げられないときに冷房を選択するというものである。連成計算に対しては、空調中の自然換気を許可する場合には何も設定しなくてよい。自然換気を不許可としたい場合には、自然換気を許可する上限室温を設定する方法で冷房中の自然換気を回避する。具体的な方法は次のようになる。

(連成用の冷房中の自然換気回避設定)

- ① 自然換気の時刻スケジュールを用意する。空調時間帯を通常モード「1」、非空調時間帯で 自然換気を行うときは夜間等モード「2」、自然換気を行わないときは非自然換気モード「0」と 設定しておく。このスケジュールを本画面の「自然換気スケジュール 時刻スケジュール名」 で選択する。
- ② 「通常モード上限室温」として、冷房設定室温より少し低い値を設定する(例えば、冷房設定室温が 26℃のときには、冷房制御による室温変動幅を考慮して、上限室温は 25℃程度に設定して、冷房中の自然換気を禁止するとともに冷房制御への干渉も防ぐ)。この許可判定は通常モードの時間帯にのみ行われ、その他のモードの時間帯には常に許可となる。
- ③ 通常モード上限室温が一定でよい場合は固定値入力、季節によって変えたい場合(例えば、 冷房期には 25℃、中間期に 23℃など)には、その値を年間スケジュールで設定し、そのス ケジュール名を選択する。

自然換気の計算法に関しては、「2.6.13 自然換気」参照。

◆自然換気制御のその他の条件

自然換気制御画面の設定を行うと、自動的に以下の条件が仮定される。

- ① 外気温>室温のときには自然換気を許可しない。
- ② 非連成計算の場合、空調機で加熱処理をしているときには自然換気を許可しない。

◆連成計算での注意

自然換気下限室温を設定する場合は、冷暖房制御と自然換気下限室温制御の干渉を防ぐために、 冷房設定室温より少し低く、暖房設定室温より少し高く設定する。



図 2-29 自然換気制御入力画面

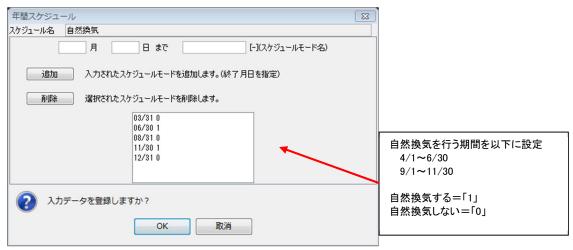


図 2-30 自然換気制御 年間スケジュール入力画面(入力例)

2.3.9. 非連成計算 外気導入制御

「非連成計算 外気導入制御」の入力データは、熱負荷計算専用のもので、外気冷房、最小外気量制御、全熱交換器を利用するケースに対して設定する。外気冷房は、冷涼な季節に、空調機から導入する外気量を増やして、外気の冷却力で積極的に室冷房負荷を処理する省エネ手法である。最小外気量制御は、外気冷房とは逆に、在室者に必要な最低限の外気量に絞って外気負荷を抑制する省エネ手法で盛夏期や冬期暖房時に効果がある。全熱交換器は、空調機に導入する外気と排気の間で顕熱・潜熱の熱交換をする装置で、最小外気量制御と同じ季節・条件のときに省エネ効果がある。夏には導入した外気の熱と湿気を排気に移して外気の予冷除湿を行い、冬には排気の熱と湿気を導入外気に移して外気の予熱加湿を行う。計算対象とする外気導入制御は、ゾーンごとに個別の制御が行われるものとする。

図 2-31 に、入力画面を示す。「外気導入制御名」は必須入力であり、識別できる名称を入力する。 外気冷房、最小外気量制御、全熱交換器の「なし」、「あり」を選択すると、設定するべき項目のみが入力可能となる。外気冷房や全熱交換器を利用する場合、運転許可条件として室内外エンタルピ差を「考慮する」を選択すると、全熱負荷の不利を抑えることができる。外気冷房の項目のうち「最大外気量比」は、必ず設定する。設計外気量(ゾーン要素データである「ゾーン空調条件」の画面で設定)に対してどの程度まで外気導入量を増量できるかを 1 以上の比率で入力する。「下限外気温度」、「上限外気露点温度」、「下限外気露点温度」は、必要に応じて設定する。空欄にすると、その項目に関しては常に許可すると扱われる。「外気冷房用設定室温」は、外気導入量調整を行う下限設定室温のことで、空欄にすると冷房設定室温(非連成計算 空調運転モード画面で設定する。外気導入制御のその他の条件④参照)と同じと仮定される。

最小外気量制御の入力項目の「下限外気量比」は、非空調空間の排気量確保などのために必要となる外気導入量の下限値を設計外気量に対する比率で設定する。「室内設定 CO2 濃度」の欄に値を設定すると、CO2 濃度による外気導入量調整を行う。空欄にした場合は、在室率に等しい外気導入率に調整される。

全熱交換器の許可条件として、室内外温度差を「考慮する」を選択すると、顕熱負荷の不利が生じない運転となる。加熱負荷がゼロとなるように熱回収効率の調整を行うこともある。全熱交換器と最小外気量制御を組み合わせる場合には、極端な少風量運転を避けるために外気導入量の下限値を設計外気量に対する比率で設定できる。

外気制御の計算法の詳細については、文献4を参照。

◆外気導入制御のその他の条件および注意

画面で設定する条件のほかに、以下の条件が自動的に仮定される。

- ① 外気温>室温のときには、外気冷房を許可しない。
- ② 自然換気を行うケースに対して外気冷房の設定を行うと、自然換気併用外気冷房の計算が可能となる。自然換気と外気冷房の両方が許可された時刻の自然換気下限室温と外気冷房設定室温は、高い方の値で統一され、自然換気優先の運転がされる。すなわち、自然換気のみでは室温が下限室温より高い場合に外気冷房が作動する。

⁴ 郡・石野・村上:外皮・躯体と設備・機器の総合エネルギーシミュレーションツール「BEST」の開発(その173)自然換気併用外気制御システムをもつゾーンの熱平衡計算、空気調和・衛生工学会大会学術講演論文集、pp.17·20、2016.9

- ③ 「外気冷房用設定室温」の入力を省略したときに仮定される冷房設定室温が未設定の場合、 外気冷房用設定室温が 0℃と仮定されるので注意が必要である。
- ④ CO2濃度による最小外気量制御の計算では、外気 CO2濃度を400ppmと仮定している。
- ⑤ 全熱交換器は加熱冷却要求があるときに熱負荷削減のために運転するものとし、無負荷持には運転を許可しない。
- ⑥ 全熱交換器の効率は、全熱、顕熱両方の効率として計算に使用される。

別 非連成計算 タ	外気導入制	IN IN		3
外気導入制御名				
卜 気冷房	○なし	® あり		
是少外気量制御	○なし	® あり		
è 熱交換器	○なし	● 振り		
外気冷房・全熱3 許可条件 室内外エンタ			○考慮しない	
外気冷房				
最大外気量比*1			[-]	
許可条件*2				
下限外気温度		10	[C]	
上限外気露点温度		19	[0]	
下限外気露点温度		0	[C]	
外気冷房用設定室温*3			[c]	
最少外気量制御				
下限外気量比	×4	0.25	[-]	
室内設定CO2 濃度*5		1000	[ppm]	
全熱交換器			-17	
許可条件 室内	外温度差	● 考慮する	う	
効率		0.6	[-]	
最小外気量制	卸と組み合わ	けるとき		
下限外気量と	E*4	0.5	[-]	
*4 設計外気量(3	目は空欄(こ) り冷房設定! 対する比率	して下さい。 室温より低い3 を設定して下る	 を温にしたいときに設定します。)2 濃度は400ppm と仮定されます
入力データ	を登録します	か?		

図 2-31 非連成計算 外気導入制御 入力画面

2.3.10. 非連成計算 空調運転モード

図 2-32 に非連成計算 空調運転モードの入力画面を示す。

この画面は非連成計算の場合のみに入力が必要となる。

「2.2.10 時刻変動スケジュール」⑦空調、⑧外気導入では、空調、外気導入の運転・停止の時刻スケジュール入力を行ったが、そこで入力した空調と外気導入のスケジュールを選択して、その時の設定温湿度を入力することで、例えば夏期、中間期、冬期などのそれぞれの運転モードを作成することができる。

例えば夏期、中間期、冬期などで、空調の運転・停止、外気導入の有無、室内設定条件などを変更したい場合は、名称を「夏期運転モード」、「中間期運転モード」、「冬期運転モード」などとして、それぞれの期間における条件を入力し、空調運転モードのデータを作成する。

空調、外気導入スケジュールについては、最大、年間計算用のものを別々に設定できる。最大負荷 計算用のスケジュール入力を省略すると、年間用と同じスケジュールが最大用に使用される。

設定温湿度条件については、まず設定タイプとして「通常」か「ゼロエナジーバンド」かを選択する。「通常」は温湿度の状態値を1つ設定する場合、「ゼロエナジーバンド」は冷暖房を行わない温湿度帯の上下限値を設定する場合で、上限値を超えないように冷却除湿、下限値を下回らないように加熱加湿を行う計算が可能である。設定室温をスケジュール入力する場合には、「スケジュール入力を選択する」にチェックをいれ、p.32⑦'で設定したようなスケジュール名(設定室温のスケジュール)を選択すればよい。入力画面では、室内設定条件として室温と相対湿度を入力するが、プログラム内で設定相対湿度から設定絶対湿度に変換される。計算上は、相対湿度制御ではなく絶対湿度制御が仮定される。

外気冷房、最小外気量制御、全熱交換器を利用する場合には、「外気導入制御をするとき」の項目を設定する。外気導入制御名は、「非連成計算 外気導入制御」画面で作成した外気導入制御データの中から該当する名称のものを選択する。外気導入制御データで設定した項目のうち、外気冷房、最小外気量制御、全熱交換器の「あり」「なし」に関して、「あり」を「なし」に変更することもできる。例えば、外気冷房、最小外気量制御、全熱交換器全て「あり」と設定されている外気導入制御データに対して、中間期の空調運転モードの場合は最小外気量制御と全熱交換器の運転を「なし」に変更し、暖房期の場合には外気冷房を「なし」に変更するなどの利用が可能である。

図 2-32. 非連成計算 空調運転モード入力画面

2.3.11. 非連成計算 空調運転モードスケジュール

図 2-33 に非連成計算 空調運転モード年間スケジュール設定入力画面を示す。

この画面は建築単独計算の場合のみに入力が必要となる。

「2.3.10 非連成計算 空調運転モード」で作成した空調運転モードを期間毎に選択する。例えば、3/31までを冬期運転モード、5/31までを中間期運転モード、9/30までを夏期運転モード、12/31までを冬期運転モードなどとする。

図 2-33. 非連成計算 空調運転モード年間スケジュール設定入力画面

2.3.12. 建築計算のデータ保存

図 2-34 に建築計算のデータ保存の入力画面を示す。

ここでは、建築計算の結果のデータ出力期間を設定することができる。

あらかじめ 2.2.6 年間スケジュールで出力したい期間のスケジュールを設定しておき、プルダウンメニューから選択することで、例えば夏と冬だけの結果を出力することが可能である。

年間スケジュールを設定する際には、出力する期間のスケジュールモード名を「on」、出力しない期間のスケジュールモード名は「off」と入力する。(図 2-35 参照)

プルダウンメニューより年間スケジュールを選択しなかった場合は、全期間の計算結果が自動的に 出力される。

図 2-34. 建築計算のデータ保存入力画面

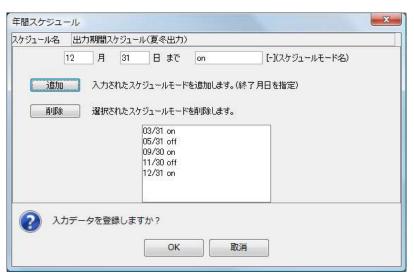
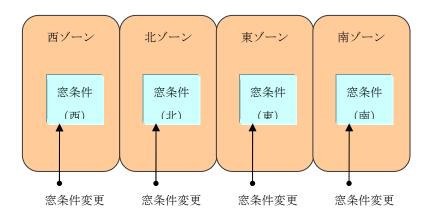
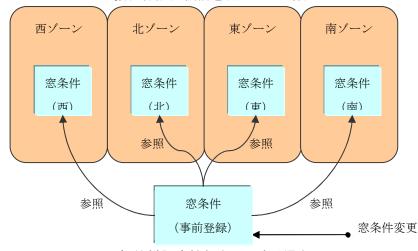


図 2-35. 夏冬のみ出力したい場合の年間スケジュールの入力例 (この画面はデフォルトではなく、入力画面の例である。)

便利な機能 9 出力期間を空欄とした場合の取扱い


出力期間を空欄にすると、全期間出力が仮定されます。

専用の年間スケジュール名を設定しておくと、年間スケジュールの出力期間を変更することで、期間を限定したり、出力しないようにするなどの変更が可能です。


2.4. 一括仕樣設定

2.6 で解説する各ゾーン要素は、建築要素の「室>グループ>ゾーン」内にそのゾーンに関するものが個々に登録される仕組みとなっている。そのため、同種類のゾーン要素であっても属するゾーンが異なれば、各ゾーンに同種類のゾーン要素の条件を全て設定する必要がある。例えば、東面、西面、南面、北面の各ゾーンの窓に同じ種類の窓ガラスを用いる場合にも、4 つのゾーンそれぞれに同じ内容の窓のゾーン要素を設定しなければならない。大規模建築物の計算において階数が複数あれば、すべての階のゾーンにも窓条件の設定が必要である。さらに、数種類の窓ガラス品種について BEST 計算を行って最適な省エネルギー性能となる窓ガラス品種を検討・選定する際には、窓条件変更(階数×ゾーン数×窓ガラス品種数)の作業が多くなり、とても煩雑で、入力ミスを起こさないか心配される。

そこで、BEST プログラムでは、複数のゾーンに同じように設定されるゾーン要素の条件内容をあらかじめ登録しておき、これを各ゾーンから参照させることで、各ゾーンに同じ条件を設定できる機能を用意した。これを「一括仕様設定機能」と呼ぶ。この機能を用いると、条件変更の場合にも参照元のゾーン要素の条件を変更するだけで、各ゾーンのゾーン要素の設定が一括して変更できる。計算条件の入力や条件変更の手間を大幅に軽減できるものである。

(a)一括仕様設定機能を利用しない場合

(b)一括仕様設定機能を利用する場合

図 2-36 事前登録機能のイメージ図(例:窓条件)

<一括仕様設定機能の利用手順>

1一括仕様設定用のゾーン要素の選択

一括仕様設定機能は、BEST 共通画面の「マスター」(左列)の「建築」タブから利用できる。「建築データの設定>一括仕様設定」フォルダ内に、①外壁条件、②内壁条件、③家具類条件、④窓条件、⑤昼光条件、⑥ゾーン間換気条件、⑦照明条件、⑧調光条件、⑨機器条件、⑩人体条件、⑪隙間風条件、⑫ゾーン計算結果、の一括仕様設定用のゾーン要素が並べられているので、ここから一括仕様設定したいゾーン要素の一つを選択して、ダブルクリックすると、各一括仕様設定用のゾーン要素の条件設定の画面が表示される。

②一括仕様設定用のゾーン要素の条件設定

一括仕様設定用のゾーン要素の条件設定の画面から、必要な条件を設定する。各ゾーン要素の入力項目と入力画面例は、次頁以降を参照のこと。作成された一括仕様設定用のゾーン要素は、BEST 共通画面の「ワークスペース」(右列)の「建築」タブの「一括仕様設定」フォルダ内に表示される。

(3)ゾーン要素からの参照

建築要素の「室>グループ>ゾーン」内に必要なゾーン要素を作成し、ゾーン要素の入力画面の「条件名」のリストから、条件を参照したい一括仕様設定用のゾーン要素の名称を選択する。

4)一括仕様設定用のゾーン要素の条件変更

BEST 共通画面の「ワークスペース」の「建築」タブの「一括仕様設定」フォルダ内から,条件変更したい一括仕様設定用のゾーン要素を選択し,ダブルクリック,または右クリック>「プロパティ(スペック)」を選択すると,各一括仕様設定用のゾーン要素の条件設定の画面が表示される。変更が必要な項目を入力し,「OK」ボタンを押すと,一括仕様設定用のゾーン要素の条件が変更され,これを参照している全てのゾーン要素に反映される。

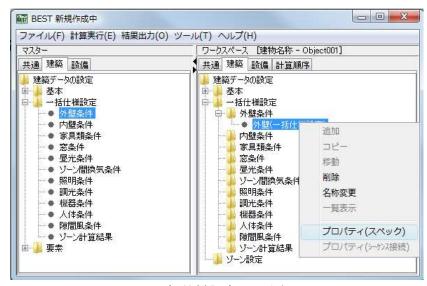


図 2-37 一括仕様設定の入力例

2.4.1. 外壁条件

図 2-38 に外壁条件入力画面を示す。この外壁条件を参照している外壁要素のうち、壁体構造名・ 部位タイプ・屋外条件・日射吸収率・長波放射率・固定温度・年間スケジュール名を一括して変更す ることが可能である。入力項目の詳細は、「2.6.1 外壁」を参照。

図 2-38. 外壁条件入力画面

2.4.2. 内壁条件

図 2-39 に内壁条件入力画面を示す。この内壁条件を参照している内壁要素のうち、壁体構造名・ 部位タイプ・隣室タイプ・隣室温度差係数・固定温度を一括して変更することが可能である。入力項 目の詳細は、「2.6.3 内壁」を参照。

図 2-39. 内壁条件入力画面

2.4.3. 家具類条件

図 2-40 に家具類条件入力画面を示す。この家具類条件を参照している家具類要素のうち、顕熱 熱容量・潜熱熱容量係数を一括して変更することが可能である。入力項目の詳細は、「2.6.4 家具 類」を参照。

図 2-40. 家具類条件入力画面

2.4.4. 窓条件

図 2-41 に窓条件入力画面を示す。この窓条件を参照している窓要素のうち、ブラインドの操作方法・色・使用率スケジュール、エアフローウィンドウの窓通風量・運転スケジュール名、ガラスのライブラリ名・窓タイプ・ガラス種類名・厚さを一括して変更することが可能である。入力項目の詳細は、「2.6.6 窓・昼光」を参照。

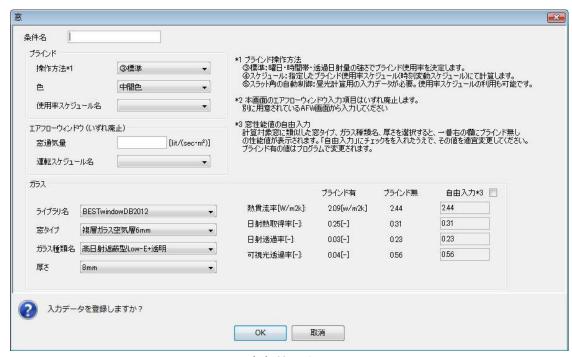


図 2-41. 窓条件入力画面

2.4.5. AFW 条件

図 2-42. AFW 条件に、AFW 条件入力画面を示す。この条件を参照している AFW 要素画面の入力項目のうち、ガラスのライブラリ名・窓タイプ・ガラス種類名・厚さ、ブラインドの操作方法・色・使用率スケジュールを一括して変更することが可能である。入力項目の詳細は、「2.6.7AFW」を参照。

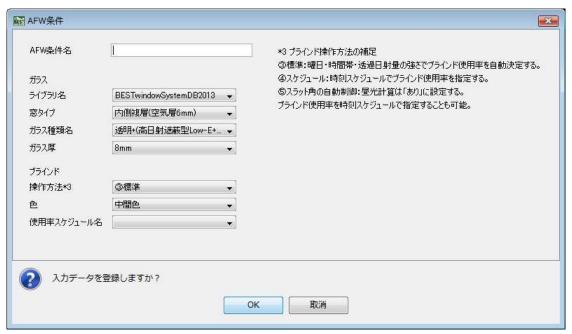


図 2-42. AFW 条件入力画面

2.4.6. 昼光条件

図 2-43 に昼光条件入力画面を示す。この昼光条件を参照している窓要素のうち、作業面高さ・床 反射率・窓反射率・壁反射率・天井反射率・スラット標準角を一括して変更することが可能である。 入力項目の詳細は、「2.6.6 窓・昼光」を参照。

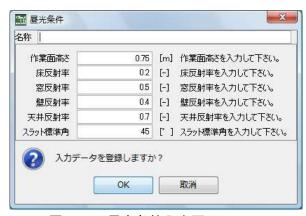


図 2-43. 昼光条件入力画面

2.4.7. ゾーン間換気条件

図 2-44 にゾーン間換気条件入力画面を示す。このゾーン間換気条件を参照しているゾーン間換気要素のうち、計算法・風量比スケジュール・風量比・境界 1m あたりの風量・方向識別指標を一括して変更することが可能である。入力項目の詳細は、「2.6.8 ゾーン間換気」を参照。



図 2-44. ゾーン間換気条件入力画面

2.4.8. 照明条件

図 2-45 に照明条件入力画面を示す。この照明条件を参照している照明要素のうち、点灯スケジュール名・照明発熱・放射成分比を一括して変更することが可能である。入力項目の詳細は、「2.6.9 照明」を参照。

内部発熱係数の使用方法については、ポイント 18 を参照。

図 2-45. 照明条件入力画面

2.4.9. 調光条件

図 2-46 に調光条件入力画面を示す。この調光条件を参照している照明要素のうち、設定照度・照明発光効率・照明器具効率・照明保守率・照明列数・調光照明列数・照明列間隔を一括して変更することが可能である。入力項目の詳細は、「2.6.9 照明」を参照。

図 2-46. 調光条件入力画面

2.4.10. 機器条件

図 2-47 に機器条件入力画面を示す。この機器条件を参照している機器要素のうち、使用率スケジュール名・冷却方式・顕熱発熱量・潜熱発熱量・エネルギー源を一括して変更することが可能である。入力項目の詳細は、「2.6.10 機器」を参照。

内部発熱係数の使用方法については、ポイント 18 を参照。

図 2-47. 機器条件入力画面

2.4.11. 人体条件

図 2-48 に人体条件入力画面を示す。この人体条件を参照している人体要素のうち、在室率スケジュール名・人数・代謝量(夏期・冬期・中間期)・衣替えスケジュール名・着衣量(夏期・冬期・中間期)、代謝量変動率年間スケジュール名、着衣量変動率年間スケジュール名・気流速度を一括して変更することが可能である。入力項目の詳細は、「2.6.11 人体」を参照。

内部発熱係数の使用方法については、ポイント 18 を参照。

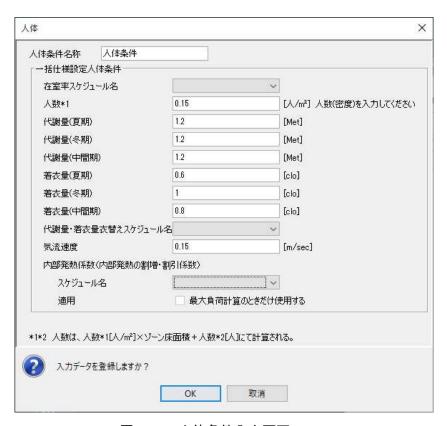


図 2-48. 人体条件入力画面

2.4.12. 隙間風条件

図 2-49 に隙間風条件入力画面を示す。この隙間風条件を参照している隙間風要素のうち、計算法・換気回数・換気回数スケジュール名・外壁気密性を一括して変更することが可能である。入力項目の詳細は、「2.6.12 隙間風」を参照。

図 2-49. 隙間風条件入力画面

2.4.13. 自然換気条件

図 2-50 に、自然換気条件の入力画面を示す。この自然換気条件を参照している自然換気要素の入力項目のうち、計算法、換気口の有効開口面積・主方位(計算法として有効開口面積法を選んだとき)、換気回数の固定値あるいは年間スケジュール名(計算法として換気回数法を選んだとき)を一括して設定したり変更したりすることが可能である。主方位の入力を省略すると、外部風を無視した計算を行う。入力項目の詳細は、「2.6.13 自然換気」を参照。

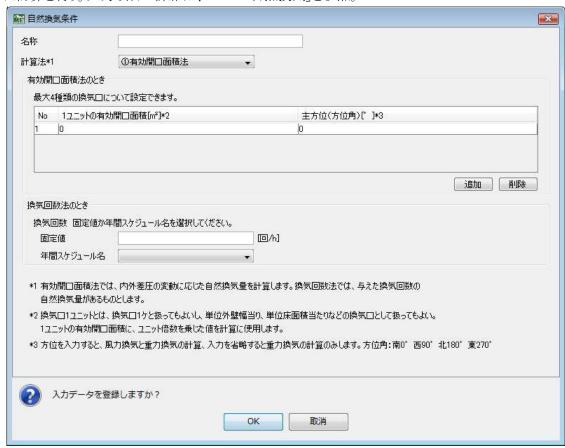


図 2-50 自然換気条件入力画面

2.4.14. ゾーン計算結果

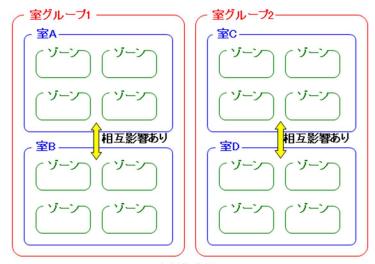
図 2-51 にゾーン計算条件入力画面を示す。このゾーン計算条件を参照しているゾーン計算要結果素のうち、各時間ステップの結果出力・1 時間間隔の結果出力・月別の結果出力を一括して変更することが可能である。入力項目の詳細は、「2.6.14 ゾーン結果出力」を参照。



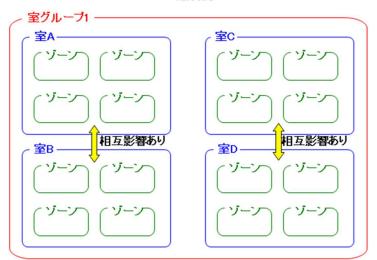
図 2-51. ゾーン計算条件入力画面

2.5. 建築 要素

2.5.1. 室グループ・室・ゾーンの定義


多ゾーン相互の影響を考慮することが可能であることが、建築プログラムの大きな特徴のひとつで ある。建築プログラムでは、「室グループ」、「室」、「ゾーン」を定義し、計算を行っている。

「室グループ」: 室のまとまりのこと。相互に熱的影響のある室は必ず同一室グループに属する必要がある。


「室」: 閉空間あるいは閉空間に近い空間のこと。

「ゾーン」: 室の内部を水平方向に分割した空間のこと。

図 2-52 に、室グループ、室、ゾーンの構成例を示す。(a)は、相互に熱的影響のある室 A と室 B、室 C と室 D を、それぞれ別の室グループに配置した例である。これに対して(b)のように、室 A~D をまとめて 1 つの室グループに配置することもできる。また、BEST は、現段階では、壁面流や噴流の影響を考慮しない計算であるため、垂直方向のゾーン分割は推奨しない。

(a)構成例1

(b)構成例2

図 2-52. 室グループ・室・ゾーンの構成例

2.5.2. 室グループ・室・ゾーンの設定方法

図 2-53 に、建築エレメント画面における、室グループ・室・ゾーンの設定方法を示す。 右クリック→追加を選択することで、「室グループ」、「室」、「ゾーン」を順次追加することができる。

図 2-53. 建築エレメント(室グループ・室・ゾーンの設定)

2.5.3. 室グループ

図 2-54 に室グループの入力画面を示す。

ここでは室グループ名称を入力する。

図 2-54. 室グループ入力画面

2.5.4. 室

図 2-55 に室の入力画面を示す。

ここでは室名称を入力する。

室名称は、同じ室グループ内に同名のものがあってはならない。

図 2-55. 室入力画面

2.5.5. ゾーン

図 2-56 にゾーンの入力画面を示す。

ここでは、ゾーン名称、天井高さ、ゾーン床面積、床面地上高を入力する。

床面地上高は隣棟の影の計算及び隙間風計算に使用される。隙間風計算の観点では下層階を代表階として扱うと良い(隙間風が流入する側の計算結果が得られる為)。

ゾーン名称は、同じ室グループ内に同名のものがあってはならない。

ゾーンごとに、負荷要素を入力するが、次ページ以降に詳細を記述する。

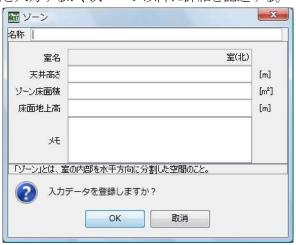


図 2-56. ゾーン入力画面

ポイント 14 ゾーン入力における天井高と床面地上高さ

ゾーン画面で入力する、天井高は、家具量算定や風量算定(換気回数法で、隙間風・外気導入量を求める場合)に用いられます。また、床面地上高さは、隙間風計算(外壁漏気係数法や室内外差圧を用いる場合)や隣棟の日陰計算で用いられます。

便利な機能 10 室グループやゾーンのコピー機能

室グループやゾーンのデータ作成に利用できる便利な機能があります。

データコピー: 作成した室グループやゾーンのデーター式を、コピーして別の室グループやゾーンのデータとすることができます。 ゾーンのデーター式コピーの例で、手順を説明します

- (a)予めゾーン登録により、コピー先ゾーンのフォルダーをワークスペース上に作ります。
- (b)ワークスペース上のコピー元ゾーンフォルダーを選択し右クリックして、「コピー」を選びます。
- (c)現れた画面で、コピー先のゾーンフォルダーを選択します。

名称変更・削除:室グループやゾーンの名称変更・削除を行いたいときは、対象のフォルダーを選択し右クリックして、「名称変更」あるいは「削除」を選びます。

ポイント 15 ゾーン要素データの入力で注意すべきポイント

要素登録先のゾーン指定:マスターから要素画面を開きデータ設定を行った後、了解ボタンを押すときには、必ず登録先のゾーンが選択されていなければいけません。

要素データのコピー:ワークスペースの要素データをコピーして、別の要素データを作成できます。 まず、コピー元のワークスペース上の要素名を選択して右クリックし、「コピー」を選びます。現れた 画面で、コピー先のゾーンを選択し、またコピー先名称を入力します。

要素名の変更、削除:同様の方法で、要素データの名称変更や削除が可能です。

要素種類別一覧表示:同様の方法で、同一種類の要素データの内容を一覧表示できます。ワークスペース上の要素名を選択して右クリックし、「一覧表示」を選択します。

2.6. ゾーン要素

図 2-57 にゾーン要素の入力画面(メイン画面)を示す。

基本的な操作としては、以下の手順が必要である。

- ①右側の「ワークスペース」に、「室グループ」、「室」、「ゾーン」を作成する(右クリック→追加の作業を行う)。
- ②左側の「マスター」の「建築」タブ内に表示される「要素」の項目をそれぞれ選択・編集し、「ワークスペース」内に作成した「ゾーン」へ追加していく。

「マスター」内の「要素」のそれぞれの項目にはデフォルト値が設定されているため、一般的な入力の場合にはデフォルト値をそのまま利用し、空欄のテキストボックス・コンボボックスを入力すればよい。

計算方法により必要な入力項目が異なる。入力不要な項目に数値等が入力されていても計算エンジンでは無視しているため、計算結果への影響はない。

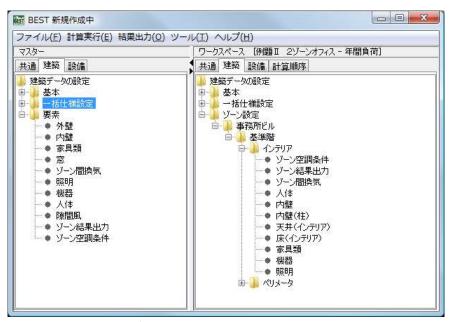


図 2-57. ゾーン要素の入力画面(メイン画面)

便利な機能 11 一括仕様設定の活用

ゾーン要素を入力するに当たって、あらかじめ一括仕様設定にて、各ゾーン要素の仕様を設定しておくと便利です。詳細は「2.4 一括仕様設定」を参照して下さい。

2.6.1. 外壁

図 2-58 に外壁の入力画面を示す。

「壁体構造名」、「外表面名」は、それぞれ「2.3.3 壁体構造」、「2.3.7 外表面」にて登録したものから選択する。

「外壁名」は、同じゾーンに同名のものがあってはならないが、別のゾーンであれば同名のものがあってもかまわない。

部位タイプは、放射が吸収される部位を特定するための入力項目である。

隣室の温度が年間一定の場合には、固定温度を入力する。

また、年間スケジュールを作成することで、地中壁等の計算も可能である。

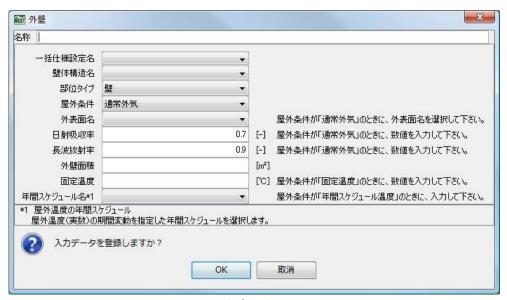


図 2-58. 外壁入力画面

◆ガラスカーテンウォールの壁部分の取扱について

ガラスカーテンウォールに対しては、ガラスと非密閉空気層を含む壁体構造を指定し、次の式から得られる日射吸収率 a' [-]を用いる。これは、ガラスを不透明体に置き換えたときの換算値で、1 を超えることが多い。計算に必要な η 、 τ 、 U_g は、窓の画面を利用して求める。

$$a' = 3.6(\eta - \tau) + 23\tau \{1 - \tau (1 - a_w)\} (\frac{1}{U_g} - 0.04)$$
...(1)

ここに、

η、τ:ガラスの日射熱取得率[-]、日射透過率[-]

U_g:ガラスの熱貫流率[W/m² K]

aw:ガラスを透過した日射が当たる壁面の日射吸収率[-]

2.6.2. ダブルスキン内側壁

図 2-59 に、ダブルスキン内側壁の入力画面を示す。「名称」は、同じゾーンに同名のものがあってはならないが、別のゾーンであれば同名のものがあってもかまわない。「壁体構造名」、「外表面名」は、それぞれ「2.3.3 壁体構造」、「2.3.7 外表面」にて登録したものから選択する。「階」は、多層吹抜けダブルスキンの場合に、ダブルスキン最下層からの階を入力すると、自然換気時のダブルスキン内空気の上下温度分布を考慮した計算がされる。入力を省略すると、全層平均の性能が仮定される。

図 2-59. ダブルスキン内側壁入力画面

2.6.3. 内壁

図 2-60 に内壁入力画面を示す。

内壁には、隣室側が建物内空間である床、天井も含まれる。

柱、梁の影響を考慮する場合は、柱、梁を内壁に置換して入力する(「3.2 壁体・梁の計算方法」を参照)。

内壁名は、同じゾーンに同名のものがあってはならないが、別のゾーンであれば同名のものがあってもかまわない。

壁体構造名は、基本情報にて登録した壁体構造より選択する。

部位タイプは、放射が吸収される部位を特定するなどのための入力項目である。

部位タイプとして「床」を選択すると、その室内側表面に窓透過日射熱や内部発熱放射成分が吸収されると仮定される。

隣接タイプ④のときには、ワークスペースの建築画面で自ゾーンのフォルダを選択した上で、該当する隣接ゾーン名と隣接ゾーン側壁名を、プルダウンメニューから選択する。

隣接ゾーンの室温が自ゾーンの室温と等しいと仮定する場合は、隣接ゾーン名欄を空欄のままに する。

また、隣接ゾーン側壁名として「指定なし」を選ぶと、隣接ゾーン側表面に吸収される放射熱(日射、 内部発熱放射、隣接ゾーン周囲壁面からの放射)の影響は考慮されず、室温のみの影響を考慮し た壁体計算が行われる。

基準階を計算する際に、床(天井)を、「隣接タイプ①、隣室温度差係数f=0」としたり、「隣室タイプ④、 隣室名="空欄"、隣室側壁名=指定なし」として計算しても良いが、「隣室タイプ④、隣室名="空 欄"、隣接側壁名=天井(床)」を選択して計算する方がより正確である。

このように設定すると、床(天井)面にあたる放射熱の影響を考慮できるからである。



図 2-60. 内壁入力画面

隣室温度差係数の設定に当たっては、下表5を参考にするとよい。

	非	空	調	室		暖房	冷房
		非	空		調	0.4	0.4
事	廊下	廊下	一部是	景気方	式	0.3	0.3
-		廊下	還	気 方	式	0.1	0.1
務	便所	還 気	によ	る換	気	0.4	0.4
室	便所	外気	にょ	る換	気	0.8	0.8
	倉	庫	II	か		0.3	0.3
	集	合	住	宅		0.3	0.3
- Z	arrry **********************************	非	空	調	室	0.6	0.9
一支	建て住宅	廊			下	0.6	0.7

85

 $^{^{5}}$ 空気調和・衛生工学会:第 14 版空気調和・衛生工学便覧 1 基礎編、p.408

2.6.4. 家具類

図 2-61 に、家具類の入力画面を示す。

一般的にはデフォルト値を使用すればよい。

1つのゾーンに複数の家具類の入力をしてもかまわない。

図 2-61. 家具類入力画面

ポイント 16 家具類の顕熱熱容量と潜熱熱容量係数

家具類の顕熱熱容量は、単位室容積あたりの熱容量で与えます。デフォルト値の15J/litKは、オフィスの実測調査⁶で得られたデータです。潜熱熱容量係数とは、家具類を空気に置換えた場合の容積の、室容積に対する比率を指しています。デフォルト値は1.0ですが、適切なデータが整備されているわけではありません。BESTの計算では、吸放湿の遅れを考慮していませんので、隙間風の多いケースでは、予冷熱時の潜熱負荷が極端に大きくなることがあります。最大熱負荷計算の場合には、適宜、潜熱熱容量係数を小さく仮定するなどの調整を行うとよいでしょう。

-

⁶ 石野・郡:事務所建築における家具類の熱的影響に関する実測研究、日本建築学会計画系論文報告集 pp.59-66、No.372、1987.2

2.6.5. ダブルスキン内側窓

図 2-62 に、ダブルスキン内側窓の入力画面を示す。「名称」は、同じゾーンに同名のものがあってはならないが、別のゾーンであれば同名のものがあってもかまわない。「外表面名」は、「2.3.7 外表面」にて登録したものから選択する。「階」は、多層吹抜けダブルスキンの場合に、ダブルスキン最下層からの階を入力すると、自然換気時のダブルスキン内空気の上下温度分布を考慮した計算がされる。入力を省略すると、全層平均の性能が仮定される。

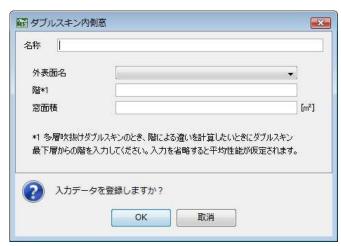


図 2-62. ダブルスキン内側窓入力画面

2.6.6. 窓・昼光

図 2-63 に窓の入力画面を示す。

本画面は一般的な窓用のものであり、ダブルスキンのインナースキンの窓に対しては「2.6.5 ダブルスキン内側窓」にデータ作成法が説明されている。また、本画面中の「エアフローウィンドウ(AFW)」の項目は、いずれ廃止されます。「2.6.7AFW」に説明されている入力法を利用してください。

「窓名」は、同じゾーンに同名のものがあってはならないが、別のゾーンであれば同名のものがあってもかまわない。

「外表面名」は、「2.3.7 外表面」で登録したデータから選択する。ただし、ダブルスキン用の外表面は選択してはいけない。

「ブラインド」の「操作方法」は、一般的には「③標準」(曜日時間帯透過日射の強さにて自動開閉)を選択すればよい。このときのブラインド使用率の決定は以下の通り。

- ・ 平日の 9~18 時の時間帯においては、ガラスを透過した直達日射量が 10W/m^2 を超える場合 $\rightarrow 100 \text{%}$ 閉
- 10W/m²を超えない場合→20%閉
- ・ その他の時間→70%閉

「ブラインド」の「操作方法」で「④スケジュール」を選択する場合には、あらかじめブラインド開閉スケジュールを登録しておく必要がある(年間・週間・時刻変動スケジュールの入力が必要である)。

「ブラインド」の「操作方法」で「⑤スラット角の自動制御**1」を選択した場合は、「昼光計算**2」のチェックボックスにチェックを入れ、「作業面高さ」以降の入力を行う。一般的にはデフォルト値を使用すればよい。昼光計算する場合は、同時に調光計算も行うように照明画面で設定する。こうすることにより昼光利用による照明消費電力削減量が熱負荷削減効果へも反映される。

「ガラス」の「厚さ」とは、外側ガラスおよび色のついたガラスの代表厚さを示している。

データベースに準備されていないガラスを入力(自由入力)することが可能である。

●窓熱性能値の自由入力について

自由入力したいガラスの特性に似ているガラスをデータベース内からあらかじめ選択した上で、自由入力欄にチェックを入れ、熱貫流率、日射熱取得率、日射透過率、可視光透過率を入力する。 なお、これらの値はガラス単体(ブラインドなし)の特性値である。

●自由入力した場合の窓性能値の換算方法(プログラム内)

事前に選択する類似窓は、ブラインド使用時の性能推定や入射角特性の推定に利用される。

自由入力窓のブラインド使用時の性能は、以下のように推定される。

熱貫流率=1/(1/自由入力したガラス熱貫流率+類似窓のブラインドによる熱抵抗増分)

日射熱取得率=類似窓のブラインド使用時日射熱取得率

×自由入力したガラス日射熱取得率/類似窓のガラス日射熱取得率

透過率も日射熱取得率と同様の推定法である。

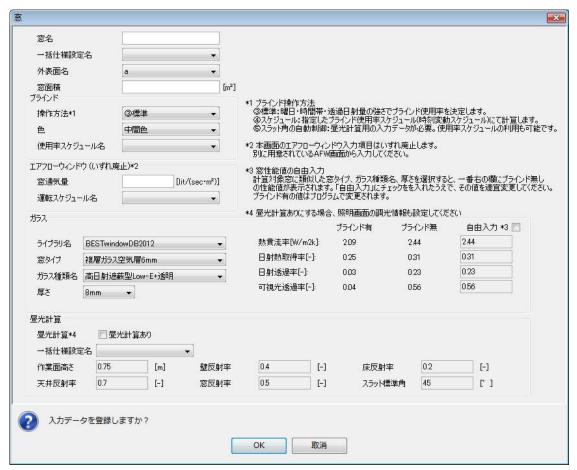


図 2-63. 窓入力画面

※1 スラット角の自動制御とは、直射光の有無や窓面への入射角に応じて、室内への直射光の進入を遮るようにスラット角を自動的に時々刻々調整する方式である。具体的には、時々刻々の直射光の状況を気象センサーで検出することを想定し、法線面直射照度が 2000lx 以上となっている場合にスラット角を、次の計算ステップまでの間に直射光が進入しない限界となるスラット角度に 5 度閉める側に角度を加えた状態として、2000lx 以下の場合はスラットを水平の状態にする制御としている。なお、ブラインド自動制御時は、全てのブラインドが終日降りている状態(使用率=1.0)としている。

※2 昼光計算の対象とする窓は、ゾーン対して1つのみ選択しなければならない(1ゾーンに対して 昼光計算対象窓を複数設定することが出来ない)。複数の窓がある場合には、昼光利用の計算上、 代表的と思われる窓についてのみ、"昼光計算あり"にチェックを入れる必要がある。

2.6.7. AFW

図 2-64 に、AFW の入力画面を示す。「AFW 名」は、同じゾーンに同名のものがあってはならないが、別のゾーンであれば同名のものがあってもかまわない。「外表面名」は、「2.3.7 外表面」にて登録したものから選択する。ただし、ダブルスキン用の外表面は選択してはいけない。「窓排気回収量」は、窓排気量の一部を空調機に回収する場合の回収風量を記入する。計算上、排気回収による熱負荷は室負荷に加算される。「運転スケジュール名」は、通常、入力を省略してよい。ガラスのライブラリ BESTwindowSystemDB

2013 は、ダブルスキンと AFW の共用ライブラリであり、AFW 用の窓タイプとして、内外とも単層、外側複層(空気層 6mm)、外側複層(空気層 12mm)から選択する。内側複層ガラスは AFW には利用されない。

「ブラインド」の「操作方法」で「⑤スラット角の自動制御」を選択した場合は、「昼光計算」のチェックボックスにチェックを入れる。昼光計算の一括仕様設定名を省略すると、標準的な昼光計算用条件が仮定される。また、昼光計算する場合は、同時に調光計算も行うように照明画面で設定する。こうすることにより昼光利用による照明消費電力削減量が熱負荷削減効果へも反映される。「ブラインド」の「操作方法」や昼光計算に関するその他の補足説明は、「2.6.6 窓・昼光」に記載されている。

AFW の熱性能を決める入力項目の設定が済むと、非通気時、通気時のシステム熱貫流率、システム日射熱取得率の値が表示される。システム熱貫流率、システム日射熱取得率とは、熱貫流率、日射熱取得率に対して、窓排気の一部を空調機に回収する影響を加味したものである。

図 2-64. AFW 入力画面

2.6.8. ゾーン間換気

図 2-65 にゾーン間換気の入力画面を示す。

計算法に応じて、必要なデータを入力する。

まず、ワークスペースの建築画面で自ゾーンのフォルダを選択した上で、該当する隣接ゾーン名を、 プルダウンメニューから選択する。

風量は、「境界 1mあたりの風量」に「境界長さ」を乗じて計算され、計算法に応じてこれにスケジュール値または風量比を乗じた値がゾーン間換気風量として計算する。

「方向識別指標」として「①自室⇔隣室」を選択した場合は、等風量が双方向に移動すると仮定される。この場合、どちらか 1 方のゾーンで入力すればよい。誤って両方のゾーンで、双方向移動のゾーン間換気を設定すると、本来の 2 倍のゾーン間換気量が仮定されるので注意する。

ポイント 17 ゾーン間換気の入力方法

境界 1m あたりの風量が不明の場合は、デフォルト値を使用してよい。

換気回数を使用してゾーン間換気量を設定したい場合は、次のように入力しても支障はない。「境界 1m あたりの風量」の入力欄に換気回数[回/h]、「境界長さ」の入力欄に空間容積[m³]を入力する。

図 2-65. ゾーン間換気入力画面

※ゾーン間換気のデフォルト値 250CMH/m は、ペリメータ容積基準 20 回換気(ペリメータ奥行=5m、 天井高=2.5m)に基づいている。

2.6.9. 照明

図 2-66 に照明入力画面を示す。

「照明発熱」はランプのワット数ではなく、安定器を含めた発熱量を入力する。

「調光計算」を行う場合には、「調光計算あり」のチェックボックスを入力し、それ以下の入力欄にデータを入力する。一般的にはデフォルト値を使用すればよい。「調光計算あり」を指定できる照明入力は各ゾーン1つであり、窓名の欄には代表的な窓を1つ選んで入力する。

天井チャンバ方式を採用する事務室にて、居室と天井内を別ゾーンとして計算する際には、居室と 天井内に照明発熱を按分して入力するとよい。

BEST1204 では、最大熱負荷計算と年間熱負荷計算で内部発熱係数を使い分ける機能が追加された。

内部発熱係数の使用方法については、ポイント 18 を参照。

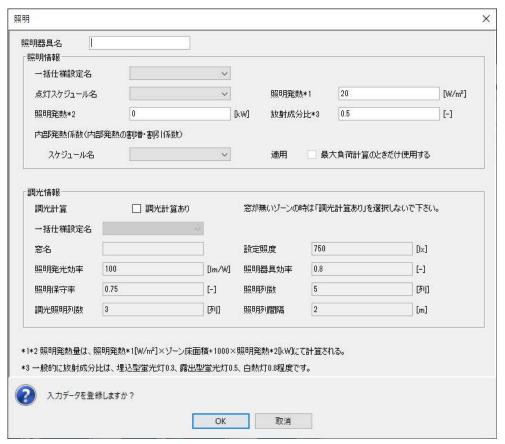


図 2-66. 照明入力画面

ポイント 18 最大熱負荷計算における内部発熱係数

内部発熱(照明・機器・人体)を、最大熱負荷計算と年間熱負荷計算で使い分けたい場合には、内部発熱係数スケジュールを「最大負荷計算のときだけ使用する」にチェックを入れることで対応できる。

例えば、冷房ピーク計算では、内部発熱を年間熱負荷計算の 1.2 倍に、暖房ピーク計算では、内部発熱を年間熱負荷計算の 0.5 倍に設定して計算することが出来る(年間熱負荷計算では、内部発熱係数を考慮しない内部発熱にて計算される)。内部発熱係数を用いることで、ピーク電力の検討も行うことが出来る。

2.6.10. 機器

図 2-67 に機器入力画面を示す。

冷却方式として、「自然放熱」か「強制空冷」を選択する。

「自然放熱」を選択すると、対流、放射放熱比率は半々と仮定され、「強制空冷」を選択すると、全て対流放熱すると仮定される。

「強制空冷」は、排熱用ファンが組み込まれた機器に対して選択する。

機器の発熱量は、

(㎡あたりの機器発熱量[W/㎡]×ゾーン床面積[㎡])+(ゾーン内機器の総発熱量[kW]×1000)で計算される。

エネルギー源は、「電気」「その他」より選択する。「その他」が選択された場合は、電力消費量の集計からは除外される。なお、空欄(旧バージョンのデータを表示させた場合など)が選択されている場合は電気とみなされる。例えばガス機器等の発熱を「その他」として入力すると、機器発熱が負荷計算には反映されるが、電力消費量の集計には反映されない。

内部発熱係数の使用方法については、ポイント 18 を参照。

図 2-67. 機器発熱入力画面

2.6.11. 人体

図 2-68 に人体の入力画面を示す。

季節ごとの「代謝量」、「着衣量」、「気流速度」(在室者近傍の気流速度)は、人体発熱量及びPMVの両方の算定に用いられる。

1 ゾーンに複数の人体の入力を行ってもよいが、この場合ファイルへ出力される PMV の値は、計算 プログラムが受け取ったそのゾーン最後の人体条件で計算された値となる。

「衣替えスケジュール名」は、「2.2.7 衣替えスケジュール」で登録したスケジュールより選択する。 内部発熱係数の使用方法については、**ポイント 18** を参照。

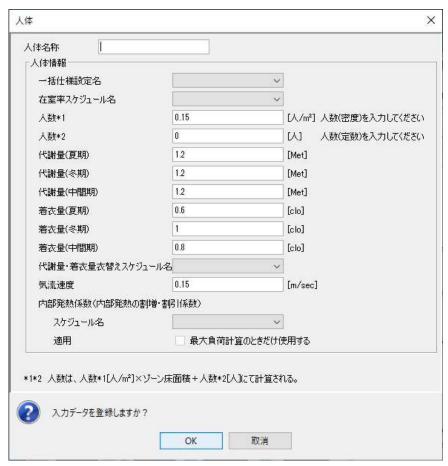


図 2-68. 人体入力画面

ポイント 19 衣替えスケジュールと内部発熱係数の違い

衣替えスケジュールは、在席者の着衣量や代謝量の季節による変動を考慮するために、夏期・中間期・冬期の期間を設定したスケジュール(詳しくは、p.28「衣替えスケジュール」参照)、内部発熱係数スケジュールは、季節による内部発熱の割増、割引を行う補正係数を設定したスケジュール(詳しくは、ポイント 8、ポイント 18 参照)です。

表 13・2 さまざまな衣服組合せのクロ値

着衣組合せ、	I _{cl} [clo]
パンティ・T シャツ・ショートパンツ・薄地 ソックス・サンダル	0.30
パンティ・ペチコート・ストッキング・袖つき 薄地ドレス・サンダル	0.45
ショーツ・半袖シャツ・薄地ズボン・薄地ソッ クス・靴	0.50
パンティ・ストッキング・半袖シャツ・スカー ト・サンダル	0.55
ショーツ・シャツ・薄地ズボン・ソックス・靴	0.60
パンティ・ペチコート・ストッキング・ドレ ス・靴	0.70
肌着・シャツ・ズボン・ソックス・靴	0.70
肌着・セータ・ズボン・長ソックス	0.75
パンティ・ベチコート・シャツ・スカート・厚 手膝下ソックス・靴	0.80
パンティ・シャツ・スカート・丸首セータ・厚 手膝下ソックス・靴	0.90
ショーツ・半袖シングレット・シャツ・ズボ ン・V ネックセータ・ソックス・靴	0.95
パンティ・シャツ・ズボン・ジャケット・ソッ クス・靴	1.00
パンティ・ストッキング・シャツ・スカート・ ベスト・ジャケット	1.00
パンティ・ストッキング・ブラウス・ロングス カート・ジャケット・靴	1.10
肌着・半袖シングレット・シャツ・ズボン・ ジャケット・ソックス・靴	1.10
半袖半ズボン下つなぎ肌着・シャツ・ズボン・ ベスト・ジャケット・コート・ソックス・靴	1.50

	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.				110000
注	立位時のサーマルマネ	キンで測定	$I_{cl} = 0$.	155 m2.	C/W

表 13·1	さまざまな	舌動の代謝量
	(ASHRAE,	2005)4)

(ASHRAE	, 2005)4)
括 動	[met]
休息時	
寝床時	0.7
安静時	0.8
椅座静位	1.0
起立時	1.2
长行時	59
3.2 km/h	2.0
4.8 km/h	2.6
6.4 km/h	3.8
事務作業時	
読書・椅座静位	1.0
タイプ・ワープロ	1.1
ファイル整理・椅座	1.2
ファイル整理・立位	1.4
歩き回る	1.7
物を運ぶ・持ち上げる	2.1
運転時・飛行時	2017
自動車運転	1.0~2.0
通常飛行	1.2
その他の作業	
調理	1.6~2.0
掃除	2.0~3.4
縫物	1.8
その他の活動	
ダンス	2.4~4.4
テニス・シングル	3.6~4.0
バスケットボール	5.0~7.6

注 1 met = 58.2 W/m²

 $^{^{7}}$ 空気調和・衛生工学会:第 14 版空気調和・衛生工学便覧 1 基礎編、p.330

2.6.12. 隙間風

される。

図 2-69 に隙間風の入力画面を示す。

換気回数法、室内外差圧考慮、スケジュールを考慮した隙間風を計算することが可能である。 室内外差圧とは、別の画面で入力された軒高さ、自室高さ、外壁・窓の方位や面積を使用して計算

室内外差圧を考慮した計算法②、④の場合、主方位の内外差圧をもとに隙間風の流入を判定する。 外壁漏気係数法での計算法⑤の場合は、方位ごとの隙間風量を計算し合計している。

外壁漏気係数法は、外壁面積法⁸で定義される 3 段階の漏気係数を利用している。方位別に内外 差圧と外壁・窓面積から隙間風を算出する。

図 2-69. 隙間風入力画面

ポイント 20 隙間風入力における注意事項

隙間風量及び外気取入量(建築単独計算においては「2.6.14 ゾーン空調条件」にて入力)をゼロとして計算すると、人体及び加湿器からの水蒸気がゾーンから排出されない計算となる為、除湿を行わない時期には、ゾーン内の湿度が上昇し続ける計算結果となる。実建物における現象に近い計算結果を得る為には、隙間風量及び外気取入量を適宜入力する必要がある。

 $^{^{8}}$ 早川・戸河里:煙突効果と風力による漏気量の予測 高層事務所建物の煙突効果の研究(その 3)、日本建築学会計画系論文報告集 No.407、pp.47-55、1990.1

2.6.13. 自然換気

自然換気の計算法は、有効開口面積法と換気回数法の 2 種類が用意されている。有効開口面積 法は、換気口の有効開口面積と主方位を入力し、内外差圧による自然換気量の変動を計算する方 法である。無風時の中性帯は建物高さの 2/3 の高さにあると仮定する簡易化を導入することにより、 少ない入力項目で変動する自然換気量の計算を可能としている。なお、有効開口面積とは、流量 係数×開口面積である。換気回数法は自然換気中の換気回数を固定値あるいは年間スケジュー ルで設定する方法である。

図 2-70 に、自然換気の入力画面を示す。「名称」は必須入力であり、識別できる名称を設定する。まず、「自然換気制御名」、「結果出力」について説明する。「自然換気制御名」はプルダウンメニューから選択する。空欄のままにすると、常時自然換気するものと仮定される。「結果出力」は、自然換気に関する結果出力をしたいときに、「各時間ステップの出力」、「1時間間隔の出力」のいずれかを選択する。「各時間ステップの出力」を選択すると、自動的に月別の結果出力もされる。

一括仕様設定条件を利用する場合は、プルダウンメニューから選択する。選択すると、計算法の設定が不要となるほか、計算法として有効開口面積法を選んだときには一括仕様条件の換気口 1 ユニットの有効開口面積と主方位、換気回数法を選んだときには換気回数の固定値と年間スケジュール名は設定不要となる。有効開口面積法を選んだ場合、一括仕様条件の各換気口のユニット倍数を入力する。1 ユニットの有効開口面積にユニット倍数を乗じた値が、その換気口の有効開口面積と仮定される。さらに、ゾーン独自の換気口を、最大 4 種類まで追加入力することもできる。「追加」ボタンをクリックして、1 ユニットの有効開口面積と主方位、必要な場合はユニット倍数のデフォルト値の 1.0 を変更する。主方位の入力を省略すると、外部風を無視した計算を行う。計算法として換気回数法が選択されている場合、更なる入力は必要ない。

一括仕様設定条件を利用しない場合は、計算法として、「①有効開口面積法」と「②換気回数法」のどちらかを選択する。有効開口面積法を選択した場合、最大 4 種類の換気口について上述の方法で設定する。換気回数法を選択した場合、一定の換気回数でよい場合は固定値を設定する。換気回数の季節変動を考慮したい場合は、事前に換気回数の年間スケジュールデータを用意しておき、年間スケジュール名としてそのデータを選択する。スケジュールを使用しない項目は空欄にする。計算法やその特徴については、文献^{9,10}を参照のこと。

最近の開発内容、空気調和・衛生工学会大会学術講演論文集、pp.1-4、2014.9 ¹⁰ 郡・石野・長井・村上:外皮・躯体と設備・機器の総合エネルギーシミュレーションツール「BEST」の開発(その132)自然換気 制御の計算法、空気調和・衛生工学会大会学術講演論文集、pp.9-12、2014.9

図 2-70 自然換気入力画面

2.6.14. ゾーン結果出力

図 2-71 にゾーン結果出力入力画面を示す。ゾーン毎に計算結果の出力形式を指定することが可能である。出力は各時間ステップでの結果出力、一時間間隔の結果出力、月別の結果出力の有無を各々チェックボックスで指定する。

図 2-71. ゾーン結果出力入力画面

ポイント 21 詳細な時刻変動解析が可能

時刻変動解析のためのグラフ作成には、1 時間間隔の結果を利用するのではなく、各時間ステップの結果を利用することをお勧めします。BESTでは、計算時間間隔を細かく設定でき、また年間計算用に 1 分値気象データも利用できます。1 時間間隔の時刻変動解析が普通であったこれまでと違った詳細変動解析が可能です。

2.6.15. ゾーン空調条件

図 2-72 にゾーン空調条件入力画面を示す。

建築単独計算を行う場合に入力が必要となる。

最大負荷計算の場合は、冷暖房容量の欄の入力は不要である。

最大負荷計算を実行した後に、「最大負荷計算による容量表示」ボタンをクリックすると、その結果が参考値として表示される。これを参考にしながら空調容量を設定することが可能である。

また、「装置容量の自動設定」の「最大負荷計算結果を装置容量に自動設定」にチェックを入れて おくと、冷暖房容量をあらためて入力する必要はなく、プログラムによって最大熱負荷計算の結果 (冷房・暖房の顕熱・潜熱負荷)が装置容量(冷房・暖房の顕熱・潜熱容量)に設定される。

図 2-72. ゾーン空調条件入力画面

※「外気取入量」の入力における注意事項:

「ポイント 20 隙間風入力における注意事項」を参照のこと。

※BEST1204 で改訂前のデータを読み込んだ場合の注意事項

2012 年 4 月以前に作成したデータを BEST1204 で読み込むと、ゾーン空調条件のデータは、改訂前の画面で表示されます。このまま、実行は可能ですが、新機能を利用するには、ゾーン空調条件のデータを入力し直す必要があります。なお、現在建築エンジンデータ(UI で作成して出力される XML データ)のインポート機能を付加するための改良を進めており、この機能が実装されると旧データを新画面に取り込むことが可能になります。

ポイント 22 最大熱負荷計算では装置入力は不要

最大熱負荷計算の場合は、冷暖房容量の入力は不要です。デフォルト値のままとし、変更する必要はありません。

2.7. 計算出力ファイル

建築の計算結果の出力ファイルには、bestBuilU.csv、bestBuilH.csv、bestBuilM.csv、bestBuilPeak.csv がある。また、計算結果とは別に、実行時に判明するエラーや入力データの誤りの恐れについてのメッセージが、report(共通建築).log というファイルに出力されることもある。これらのファイルは、例えば BEST フォルダーを C:\Documents and Settings\Users\Users\Documents にインストールした場合には、

C:\footuments and Settings\footuments\foot

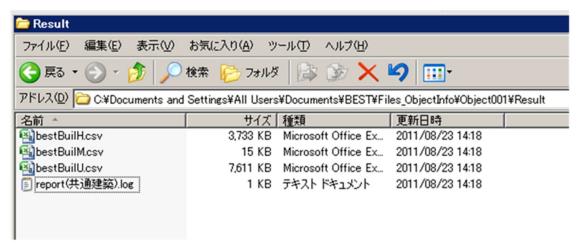


図 2-73 計算結果の出力ファイル

2.7.1. 各時間ステップの結果出力ファイル

bestBuilU.csv には、指定した出力期間の全ての計算時間での結果が出力される。bestBuilU.csv には、指定した出力期間の全ての計算時間での結果が出力される。実在複数年の連続計算を行うと1年単位に出力ファイルが作成される。ファイル名には年が含まれ、例えば1981年の結果のファイルはBestBuil1981U.csv という名称となる。

出力項目は、大きく、時間情報、気象、各ゾーンの計算結果に分けられる。csv ファイルの出力例を 図 2-74 に示す。

1時間情報

•出力項目

年、月、日、時、分、曜日、気象種類*、月(気象)*、日(気象)*

* 最大負荷計算のときに出力される。

•補足

【年】標準年気象データを使用する場合や最大負荷計算の場合、2006と表示される。

【月、日】最大負荷計算の場合、グラフ表示に便利であるように、計算上の暦ではなく、1/1 から連続する日付で、日周期定常状態の結果が出力される。

【曜日】日曜日が1、月曜日~土曜日までが2~7、特別日が0、祭日はマイナスの値で表示される。 【気象種類】最大負荷計算の場合に表示される。「t-x1%」、「t-Jh1%」は暖房設計用気象データ、「ht0.5%」、「Jc-t」、「Js-t」は冷房設計用気象データ。

【月(気象)、日(気象)】最大負荷計算の場合に表示される。計算で想定した太陽位置に対応する 日付。

2 気象

•出力項目

外気温度[℃]、外気絶対湿度[g/g]、外気相対湿度[%]

水平面全日射量[W/m²]、水平面天空日射量[W/m²]、水平面夜間放射量[W/m²]

風向、風速[m/sec]

南面全日射量[W/m²]、西面全日射量[W/m²]、北面全日射量[W/m²]、東面全日射量[W/m²]

•補足

【風向】16 方位を整数で表示している。北北東は 1、東は 4、南は 8、西は 12、北は 16。無風の場合は 0。

【風速】EA、EPW データの場合、軒高での風速に補正された値が出力される。WEADAC データは 測定高さが不明のため高さ補正はしない。

3各ゾーンの計算結果

•ゾーンの識別

1 行目のラベルに、「室名」、「ゾーン名」、「床面積 m2」、「出力項目名」が、「 _ 」で繋いで表示される。

•出力項目

室温[℃]、絶対湿度[g/g]、相対湿度[%]、PMV[-]、OT[℃]

室負荷 S[W/m²]、室負荷 L[W/m²]、室負荷 T[W/m²]

照明電力[W/m²]、コンセント電力[W/m²]

装置負荷 S[W/m²]*、装置負荷 L[W/m²]*、装置負荷 T[W/m²]*

* 建築単独計算のときに出力され、室負荷+外気負荷の値である。

•補足

出力項目の OT とは作用温度、S は顕熱、L は潜熱、T は全熱を表す。室負荷、照明電力、コンセント電力、装置負荷の値は、各ゾーンの単位床面積あたりの値。全熱 T は、顕熱と潜熱を、符号に関する操作をせず、単純に合計した値である。

年 -	月	В		時	分		曜日	外気温		外気絶対 基度	風向	風速	南面全日射量		事務室_西 ベリメータ _112.64m2 _絶対湿度	_112.64m2	ペリメータ _112.64m2	ペリメータ	_112.64m2	事務室_西 ペリメータ _112.64m2 _装置負荷 L	ペリメータ _112.64㎡
	-	-		-	-		-	気象	g	/g	方位 気象			℃ 室温	6 6	- PMV	W/m2 照明電力	۰		W/m2	W/m2
									9	気象								スラット角		装置負荷山	装置負荷T
2006		7	10		10	30		2	27	0.016	11	3	186	26	0.0105	0.4888	0	0	40.39	31.24	71.63
2006		7	10		11	0		2 2	7.7	0.016	10	3.2	220	26	0.01 05	0.4916	0	0	41.98	30.1	72.08
2006		7	10		11	30		2 2	8.3	0.016	10	2.9	235	26	0.0105	0.4889	4.94	0	44.26	30.66	74.92
2006		7	10		12	0		2 2	9.2	0.0156	10	3 2	311	26	0.01 05	0.4888	4.77	0	43.11	27.36	70.47
2006		7	10		12	30		2 2	8.9	0.0156		1.7	235	26	0.0105	0.4862	3.06	0	35.74	24.34	60.08
2006		7	10		13	0		2	29	0.0164	13	2.4	140	26	0.01 05	0.4807	6.35	0	40.5	30.04	70.54
2006		7	10		13	30		2 2	9.5	0.0164		2.3	204	26	0.01 05	0.4899	4.42	0	42.57	29.4	71.97
2006		7	10		14	0		2 2	9.4	0.0163		2.7	222	26	0.01 05	0.4965		0	44.08	28.68	72.77
2006		7	10		14	30		2 2	9.3	0.0167		3.1	209	26	0.01 05	0.5043	3.97	0	46.26	30.14	76.4
2006		7	10		15	0		2	29	0.0164	10	2.8	175	26	0.01 05	0.4989	4.73	0	45.72	29.6	75.32
2006		7	10		15	30		2 2	8.8	0.0163		3.4	144	26	0.01 05	0.504	4.63	0	46.98	29.15	76.13
2006		7	10		16	0		2 2	8.4	0.0166		3.8	102	26	0.01 05	0.4807	7.19	0	40.2	30.2	70.4
2006		7	10		16	30		2 2	7.9	0.0164		2.4	85	26	0.01 05	0.4747	7.8	0	38.22	29.48	67.7
2006		7	10		17	0		2	28	0.0162		2.8	75	26	0.01 05	0.4732	7.95	0	38.11	28.68	66.79
2006		7	10		17	30		2	28	0.0162		1.5	58	26	0.01 05	0.4713	8.5	0	38.08	28.84	66.93
2006		7	10		18	0			7.5	0.0162			43				7.59				60.99
2006		7	10		18	30		2 2	7.6	0.0163		7 1.6	23	26	0.01 05	0.4701	6.6	54.56	30.54	26.08	56.62

図 2-74 bestBuilU.csv ファイルの出力例

2.7.2. 1 時間間隔値の結果出力ファイル

bestBuilH.csv には、1 時間間隔の結果が出力される。実在複数年の連続計算を行うと1 年単位に 出力ファイルが作成される。ファイル名には年が含まれ、例えば 1981 年の結果のファイルは BestBuil1981H.csv という名称となる。

出力項目は、各時間ステップの結果出力と同じである。平均化処理はされず、正時の計算値が出力される。

2.7.3. 月別・年間値の結果出力ファイル

bestBuilM.csvには、bestBuilU.csvの各時間ステップの値を積算・平均した結果が出力される。実在 複数年の連続計算を行うと 1 年単位に出力ファイルが作成される。ファイル名には年が含まれ、例 えば 1981 年の結果のファイルは BestBuil1981M.csv という名称となる。

1時間情報

•出力項目

年、月、日、時、分、曜日

•補足

【年】標準年気象データを使用する場合や最大負荷計算の場合、2006と表示される。

【月】13と表示される行は、年平均値あるいは年積算値が示される。

【日、時、分、曜日】グラフ表示の都合上、各時間ステップの出力フォーマットに合わせている。全て「99」が表示される。

2 気象

•出力項目

外気温度[℃]、外気絶対湿度[g/g]、外気相対湿度[%]、水平面全日射量[MJ/㎡] 南面全日射量[MJ/㎡]、西面全日射量[MJ/㎡]、北面全日射量[MJ/㎡]、東面全日射量[MJ/㎡] •補足

外気温度、外気絶対湿度、外気相対湿度は、それぞれの月平均値あるいは年平均値。日射量は 月積算値あるいは年積算値。

3全ゾーン、各ゾーンの計算結果

・ゾーンの識別

1 行目のラベルに、「室名」、「ゾーン名」、「床面積 m2」、「出力項目名」が、「_」で繋いで表示される。月別出力する場合には、出力するよう指定したゾーンのほかに、全空調ゾーンの積算負荷、積算電力量も出力される。この項目は、「室名」ゾーン名」の部分が「全ゾーン」という表示になっている。・出力項目

空調時間数[hour]*

室温 空調時[℃]*、室温 非空調時[℃]*

絶対湿度_空調時[g/g]*、絶対湿度_非空調時[g/g]*

相対湿度_空調時[%]*、PMV_空調時[-]*、OT_空調時[℃]*

室負荷 S_暖房[MJ/m²]、室負荷 S_冷房[MJ/m²]

室負荷 L.暖房[MJ/㎡]、室負荷 L.冷房[MJ/㎡] 室負荷 T.暖房[MJ/㎡]、室負荷 T.冷房[MJ/㎡] 照明電力[MJ/㎡]、コンセント電力[MJ/㎡] 装置負荷 S.暖房[MJ/㎡]、装置負荷 S.冷房[MJ/㎡] 装置負荷 L.暖房[MJ/㎡]、装置負荷 L.冷房[MJ/㎡] 装置負荷 T.暖房[MJ/㎡]、装置負荷 T.冷房[MJ/㎡] *全ゾーンの結果に対しては、出力されない。

•補足

出力項目のOTとは作用温度、S は顕熱、L は潜熱、T は全熱を表す。空調時間数、室負荷、照明電力、コンセント電力、装置負荷は、月別あるいは年間の積算値。室温、絶対湿度、相対湿度、PMV、OT は、月別あるいは年間の平均値。「空調時」は空調時間帯平均、「非空調時」は非空調時間帯平均、「S、暖房」は加熱の積算、「L、暖房」は加湿の積算、「S、冷房」は冷却の積算、「L、冷房」は除湿の積算、「T、暖房」は、各時間ステップの全熱負荷の負の値の積算、「T、冷房」は、各時間ステップの全熱負荷の正の値の積算を表す。

2.7.4. 最大負荷検索結果出力ファイル

最大熱負荷計算の際に bestBuilU.csv を出力するよう設定すると、その出力ファイルから最大熱負荷を検索する機能が自動的に働く。検索された各ゾーンの最大熱負荷と最大熱負荷発生時の種々の状態値は、改めて bestBuilPeak.csv に出力される。bestBuilPeak.csv 内には①、②の結果が含まれている。

①設計用最大熱負荷と最大熱負荷発生時の状態値

暖房は2種、冷房は3種の気象の負荷計算結果から顕熱、潜熱、全熱別に各ゾーンの装置最大 負荷の検索結果が、最大負荷(単位はW/m²、kWの2種)の項目の値として出力される。同時に、 最大負荷発生時の次の状態値も出力される。

装置負荷(顕熱、潜熱、全熱)(単位はW/m²、kWの2種)

室負荷(顕熱、潜熱、全熱)(単位はW/m²、kWの2種)

室温[\mathbb{C}]、絶対湿度[g/g]、相対湿度[%]、PMV、OT[\mathbb{C}]

気象種類、月、日、時、分、bestBuilU.csv に出力された該当時刻の各種状態値

②気象タイプ別最大熱負荷と負荷発生時の状態値

暖房は2種、冷房は3種の気象の種類ごとに、最大熱負荷を検索した結果が出力される。出力項目は、①と同じ

2.7.5. ダブルスキンに関する結果出力ファイル

「2.3.6 外部形状」ダブルスキン」の入力画面でダブルスキンの結果出力として、「各時間ステップの出力」あるいは「1 時間間隔の出力」を選択すると、Result フォルダーに bestDsfU.csv あるいは bestDsfH.csv という名称のファイルが出力される。出力項目は、①時間情報、②気象、③各ダブルスキン状態に分けられる。

1時間情報

•出力項目

年、月、日、時、分、曜日、気象種類*、月(気象)*、日(気象)*

- * 最大負荷計算のときに出力される。
- •補足

【年】標準年気象データを使用する場合や最大負荷計算の場合、2006と表示される。

【月、日】最大負荷計算の場合、グラフ表示に便利であるように、計算上の暦ではなく、1/1 から連続する日付で、日周期定常状態の結果が出力される。

【曜日】日曜日が1、月曜日~土曜日までが2~7、特別日が0、祭日はマイナスの値で表示される。 【気象種類】最大負荷計算の場合に表示される。「t-x1%」、「t-Jh1%」は暖房設計用気象データ、「h-t0.5%」、「Jc-t」、「Js-t」は冷房設計用気象データ。

2 気象

•出力項目

外気温度[\mathbb{C}]、外気絶対湿度[g/g]、水平面全日射量[W/m^2]、水平面天空日射量[W/m^2]、水平面 夜間放射量[W/m^2]

3各ダブルスキン状態

- ・ダブルスキンの識別
- 1行目のラベルに、「ダブルスキン名」、「出力項目名」が、「_」で繋いで表示される。
- •出力項目

DS 面日射量[W/m³]、室外側相当温度[℃]、室内側相当温度[℃]、ブラインド使用率[-]

自然換気量(ダブルスキン単位幅当たり)[CMH/m]、通気効果率(平均)[-]、通気効果率(最下層)[-]

DS 空気温度(平均) $[{\mathbb C}]$ 、DS 空気温度(最下層) $[{\mathbb C}]$ 、DS 空気温度(最上層) $[{\mathbb C}]$

窓 U 値(平均) [W/m² K]、窓 U 値(最下層) [W/m² K]、窓 U 値(最上層) [W/m² K]

窓 η 値(平均) [-]、窓 η 値(最下層) [-]、窓 η 値(最上層) [-]、窓 τ 値[-]

•補足

【DS 面日射量】ダブルスキンのアウタースキン面日射量

【室外側相当温度】外気温に対して、夜間放射量の影響を温度換算して加味した温度

【室内側相当温度】室温に対して窓室内側吸収放射量(照明放射熱など)の影響を温度換算して加味した温度。ただし、ダブルスキンに面する複数ゾーンの平均値

【(平均)】ダブルスキン各層の値を全層について平均した値

【通気効果率】通気効果率とは、無限風量換気による熱性能変化量に対するそのときの換気による熱性能変化量の比率。通気効果率(最下層)をrと置くと、ダブルスキン最下層からn層目の通気効果率Rn、N層吹抜けダブルスキンの通気効果率(平均)Raveは、次式で表される。

$$R_n = r^n \cdots (1)$$
 $R_{ave} = r(1 - r^N)\{N(1 - r)\} \cdots (2)$

【窓 U 値、窓 η 値、窓 τ 値】インナースキンが全面ガラスと仮定した場合のダブルスキン熱貫流率、日射熱取得率、日射透過率

2.7.6. 自然換気に関する結果出力ファイル

「建築ー要素ー自然換気」の画面上の結果出力として、「各時間ステップの出力」あるいは「1 時間間隔の出力」を選択すると、Result フォルダーに bestNvU.csv あるいは bestNvH.csv という名称のファイルが出力される。出力期間は、「建築ー基本ー建築計算のデータ保存」の画面で設定する。また、年間計算などの通常計算を行うときに「各時間ステップの出力」を選択した場合には、月別結果出力ファイルである bestNvM.csv という名称のファイルも出力される。これは、bestNvU.csv ファイルの出力完了後に、改めてこのファイルを読込み月別統計処理を行い出力するもので、bestNvU.csv に出力された期間内での統計処理となる。最大負荷計算や月別代表日計算の場合には、bestNvM.csv は出力されない。

(時刻変動結果ファイル bestNvU.csv、bestNvH.csv の出力項目)

bestNvU.csv あるいは bestNvH.csv の出力項目は、①時間情報、②気象、③各ゾーン状態に分けられる。

1時間情報

•出力項目

年、月、日、時、分、曜日、気象種類*、月(気象)*、日(気象)*、時間間隔(後方)、時間間隔(前方) *最大負荷計算のときに出力される。

•補足

【年】標準年気象データを使用する場合や最大負荷計算の場合、2006と表示される。

【月、日】最大負荷計算の場合、グラフ表示に便利であるように、計算上の暦ではなく、1/1 から連続する日付で、日周期定常状態の結果が出力される。

【曜日】日曜日が1、月曜日~土曜日までが2~7、特別日が0、祭日はマイナスの値で表示される。 【気象種類】最大負荷計算の場合に表示される。「t-x1%」、「t-Jh1%」は暖房設計用気象データ、「h-t0.5%」、「Jc-t」、「Js-t」は冷房設計用気象データ。

【時間間隔(後方)、時間間隔(前方)】1 ステップ過去と 1 ステップ先の時刻との計算時間間隔[sec]。 月積算・平均処理において、各時間ステップの状態値に乗じる時間間隔は、「(時間間隔(後方)+時間間隔(前方))/2」である。

2気象

•出力項目

外気温度[\mathbb{C}]、外気絶対湿度[g/g]、外気エンタルピ[J/g]、外気相対湿度[\mathbb{N}]、風向、屋上風速 [\mathbb{m}/sec]

•補足

【風向】16 方位を整数で表示している。北北東は 1、東は 4、南は 8、西は 12、北は 16。無風の場合は 0。

【屋上風速】気象データの風速測定高さを6.5mとし、軒高での風速に換算している。

3各ゾーンの状態

•出力項目

空調モード、室温[\mathbb{C}]、室内湿度[g/g]、室内エンタルピ[J/g]、状態、換気回数[D/h]、開口率[-]、冷却熱 S(自然換気)[W/m²]、冷却熱 <math>D(h)、冷却熱 D(h)、冷却熱 D(h) D(h)

【空調モード】空調運転状態を整数で表示している。0:非空調時間帯、1:空調時間帯

【状態】自然換気の許可・不許可状態を整数で表示している。

1:許可、-9~0:不許可、-10:許可(室空気流出で効果なし)

-9~0 は不許可の理由を表している。換気許可の判定順序は、0~-4 の項目順にまず行い、多数 ゾーンの熱平衡を解きながら-5~-10 の判定を適宜行っている。

0:スケジュール上非換気 or 換気口なし or エクスプリシット法 -1:外気温〈下限外気温度

- -2:外気相対湿度>上限相対湿度 -3:外気露点温度>上限露点温度 -4:屋外風速>上限風速
- -5:室温〈下限室温 -6:室温≦外気温 -7:室内エンタルピ≦外気エンタルピ
- -8:加熱中 -9:冷却中

【換気回数】そのゾーンの容積基準の換気回数

【開口率】換気口の開口率。自然換気により室温が下限値より低くなる場合には、開口率調整を行い室温を下限値に保つ。開口率 100%で換気時間を調整する場合の換気口開放時間率に相当する。

【冷却熱 S、冷却熱 L 、冷却熱 T(自然換気) 】自然換気による冷却熱の顕熱、潜熱、全熱。

(月別結果ファイル bestNvM.csv の出力項目)

出力項目は、①時間情報、③各ゾーン状態に分けられる。

1時間情報

•出力項目

(年)、月、(日、時、分、曜日)

補足

【年】標準年気象データを使用する場合や最大負荷計算の場合、2006と表示される。

【月】13 と表示される行は、年平均値あるいは年積算値が示される。

【日、時、分、曜日】グラフ表示の都合上、各時間ステップの出力フォーマットに合わせている。全て「99」が表示される。

3各ゾーンの状態

・出力項目(以下の項目が空調時、非空調時別に出力される)

時間数、外気温[℃]、室温[℃]、絶対湿度[g/g]、換気時間数[h]、換気回数[回/h]、冷却(自然換気)[MJ/m]、除湿(自然換気) [MJ/m]、加湿(自然換気) [MJ/m]

•補足

【時間数】空調時、非空調時別の統計処理した時間数

【外気温、室温、絶対湿度】空調時、非空調時別の平均値

【換気時間数】空調時、非空調時別の換気時間数

【換気回数】空調時、非空調時別の自然換気中の平均値

【冷却、除湿、加湿】空調時、非空調時別の自然換気による処理熱量。加湿は負値。

2.7.7. 外気導入制御に関する結果出力ファイル

ゾーン要素データの「ゾーン結果出力」画面で、「各時間ステップの結果出力」、「1時間間隔の結果出力」の項目の「出力あり」にチェックを入れると、そのゾーンの外気導入制御に関する時刻変動値が、それぞれ結果ファイル bestFaU.csv、bestFaH.csv に出力される。出力期間は、「建築 – 基本 – 建築計算のデータ保存」の画面で設定した期間となる。また、「各時間ステップの結果出力」をありとした場合には、年間計算を行うと月別結果ファイル bestFaM.csv も出力される。これは、bestFaU.csv ファイルの出力完了後に、改めてこのファイルを読込み月別統計処理を行い出力するもので、bestFaU.csv に出力された期間内での統計処理となる。

(時刻変動結果ファイル bestFaU.csv、bestFaH.csv の出力項目)

bestFaU.csv あるいは bestFaH.csv の出力項目は、①時間情報、②気象、③各ゾーン状態に分けられる。

1時間情報

•出力項目

年、月、日、時、分、曜日、気象種類*、月(気象)*、日(気象)*、時間間隔(後方)、時間間隔(前方) *最大負荷計算のときに出力される。

•補足

【年】標準年気象データを使用する場合や最大負荷計算の場合、2006と表示される。

【月、日】最大負荷計算の場合、グラフ表示に便利であるように、計算上の暦ではなく、1/1 から連続する日付で、日周期定常状態の結果が出力される。

【曜日】日曜日が1、月曜日~土曜日までが2~7、特別日が0、祭日はマイナスの値で表示される。 【気象種類】最大負荷計算の場合に表示される。「t-x1%」、「t-Jh1%」は暖房設計用気象データ、「h-t0.5%」、「Jc-t」、「Js-t」は冷房設計用気象データ。

【時間間隔(後方)、時間間隔(前方)】1 ステップ過去と 1 ステップ先の時刻との計算時間間隔[sec]。 月積算・平均処理において、各時間ステップの状態値に乗じる時間間隔は、「(時間間隔(後方)+時間間隔(前方))/2」である。

2気象

•出力項目

外気温度「℃」、外気絶対湿度「g/g」、外気エンタルピ「J/g]

3各ゾーンの状態

•出力項目

空調モード、室温[\mathbb{C}]、室内湿度[g/g]、室内エンタルピ[J/g]、室内 CO_2 濃度[ppm]、装置負荷 $S[W/m^2]$ 、装置負荷 $L[W/m^2]$ 、装置負荷 $T[W/m^2]$ 、外気負荷 $S[W/m^2]$ 、外気負荷 $L[W/m^2]$ 、外気負荷 $L[W/m^2]$ 、外気急信 $L[W/m^2]$ 、外気急信 $L[W/m^2]$ 、外気急信 $L[W/m^2]$ 、外気急に回/h]、全熱交効率[-]、外気冷房許可状態

•補足

【空調モード】空調運転状態を整数で表示している。0:非空調時間帯、1:空調時間帯

【CO2 濃度】CO2 濃度制御を行うゾーンが含まれる室グループ内のゾーンについて、CO2 濃度の計

算がされる。計算を行わないゾーンについては、-1000が出力される。

【装置負荷、外気負荷、外気量】単位床面積あたりの値。S は顕熱、L は潜熱、T は全熱。装置負荷は室負荷と外気負荷の和。

【換気回数】外気量の換気回数で、対象ゾーンの容積基準の値

【外気冷房許可状態】外気冷房の許可・不許可状態を整数で表示している。

- 1:許可、-7~0:不許可(不許可状態は判定順序により変わるので参考程度)
- 0:非運転時間帯 -1:低温外気 -2:高露点温度外気 -3:低露点温度外気
- -4:低温室温 -5:室温≦外気温 -6:室内エンタルピ≦外気エンタルピ -7:加熱中

(月別結果ファイル bestFaM.csv の出力項目)

出力項目は、①時間情報、③各ゾーン状態に分けられる。

1時間情報

•出力項目

(年)、月、(日、時、分、曜日)

•補足

【年】標準年気象データを使用する場合や最大負荷計算の場合、2006と表示される。

【月】13 と表示される行は、年平均値あるいは年積算値が示される。

【日、時、分、曜日】グラフ表示の都合上、各時間ステップの出力フォーマットに合わせている。全て「99」が表示される。

3各ゾーンの状態

•出力項目

運転状態…空調時間数[hour]、換気時間数[hour]、外気温[C]、外気絶対湿度[g/g]、室温[C]、絶対湿度[g/g]、 CO_2 濃度[ppm]、外気冷房時間数[hour]、外気増量[m/h]、最小外気制御時間数[hour]、外気減量[m/h]、全熱交時間数[hour]、熱回収率[m/h]

外気の室内冷却・加熱・除湿・加湿熱量…外気負荷 S_冷却力 $[MJ/m^2]$ 、外気負荷 S_加熱力 $[MJ/m^2]$ 、外気負荷 L_除湿力 $[MJ/m^2]$ 、外気負荷 L_加湿力 $[MJ/m^2]$

外気導入制御による外気の室内冷却・加熱・除湿・加湿の熱量変化量…外気負荷 S 増_冷却力 $[MJ/m^2]$ 、外気負荷 L 増_除湿力 $[MJ/m^2]$ 、外気負荷 L 増_加湿力 $[MJ/m^2]$ 、外気負荷 S 減_冷却力 $[MJ/m^2]$ 、外気負荷 S 減_加熱力 $[MJ/m^2]$ 、外気負荷 L 減_除湿力 $[MJ/m^2]$ 、外気負荷 L 減_加湿力 $[MJ/m^2]$ 、

•補足

【外気温、外気絶対湿度、室温、絶対湿度】空調時の平均値。「絶対湿度」は室内絶対湿度 【CO2 濃度】空調時の平均値。CO2 濃度制御を行うゾーンが含まれる室グループ内のゾーンについて、CO2 濃度の計算がされる。計算を行わないゾーンについては、-1000 が出力される。

【外気増量、外気減量、熱回収率】設計外気量に対する外気冷房時の平均外気増量、最小外気量制御時の平均外気減量、全熱交換器運転時の平均熱回収率。

【外気負荷 S_冷却力、外気負荷 S_加熱力、外気負荷 L_除湿力、外気負荷 L_加湿力】空調機取入 れ外気による室内冷却、加熱、除湿、加湿の熱量積算値で、単位床面積あたりの値。S は顕熱、L は潜熱の意味。 【外気負荷S増_冷却力、外気負荷L増_除湿力、外気負荷L増」加湿力】外気冷房の外気増量による室内冷却、加熱、除湿、加湿の増加熱量積算値で、単位床面積あたりの値。Sは顕熱、Lは潜熱の意味。

【外気負荷 S 減」冷却力、外気負荷 S 減」加熱力、外気負荷 L 減」除湿力、外気負荷 L 減」加湿力】 最小外気量制御による外気減量、あるいは全熱交換器の熱回収効果を外気減量に換算したときの 外気減量による室内冷却、加熱、除湿、加湿の減少熱量積算値で、単位床面積あたりの値。S は顕 熱、L は潜熱の意味。

2.7.8. 計算結果のグラフによる確認

計算結果のグラフ出力は、メニュー欄「計算出力」→「結果グラフ出力」をクリックすることで表示される画面(図 2-75 計算結果のグラフ出力用画面)で行う。グラフ出力は下記手順で行う。

- ①グラフ表示したい計算結果ファイルの保存されているフォルダを選択する。
- ②グラフ表示したい計算結果ファイルを選択する(計算結果ファイルの詳細は「2.7 計算出力ファイル」を参照)。
- ③計算結果をグラフ表示したい期間を設定する。
- ④グラフ名称を設定する。
- ⑤グラフ種別を選択する。
- ⑥⑦X 軸・Y 軸を設定する。
- ⑧データ絞込み欄の「絞込」ボタンを押す。この時点で、ある程度出力を行いたいデータが絞られている場合には、キーワード(例えば、「装置負荷」、「室温」、「PMV」等)を入力して、「絞込」ボタンを押すと、その後の作業がスムーズとなる。表示項目を選択(複数選択可)し、表示項目選択ボタンを押す。
- ⑨グラフ表示ボタンを押すと、グラフが表示される。なお、項目ごとのグラフの色を選択や項目の順 序を入れ替えることが可能である。

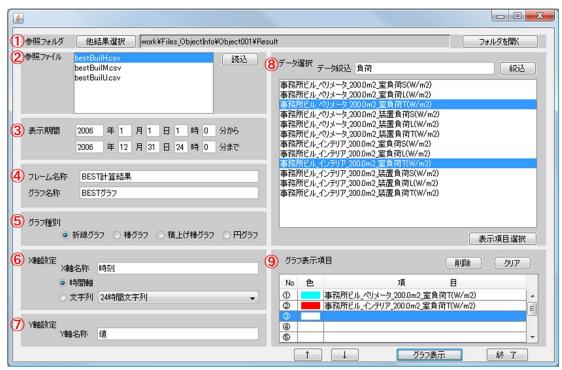
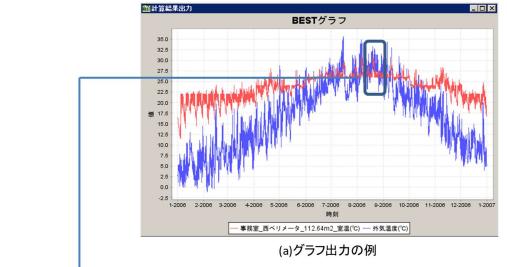



図 2-75 計算結果のグラフ出カ用画面

出力された結果の例を図 2-76 に示す。ここでは、年間計算の外気温、室温を表示している。 グラフを拡大したい場合は、マウスで拡大したい範囲を指定することで拡大できる(b)。また、元のグラフに戻したい場合は、拡大表示したグラフ画面上でマウスを左にドラッグすると元に戻る。

(b)拡大後のグラフ

図 2-76 グラフ出力の例

2.8. XML ファイルのインポート機能

以下の手順にて、XMLファイルをインポートすることが可能です。

- ①上部バーの「ファイル」メニューから、「XML インポート」を選択。
- ②XML インポート画面の参照ボタンをクリックし、物件データを選択。
- ③表示されている XML ファイル構成図の中の取り込みたいファイルにチェックを入れ、「実行」ボタンをクリックする。
- ④取り込み確認メッセージに対して「了解」ボタンをクリックする。

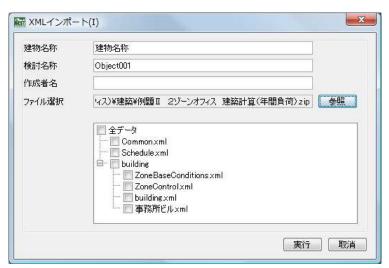


図 2-77 XML インポート画面

便利な機能 12 XML のインポート機能

他プロジェクトで作成した BEST 入力データの一部を、別プロジェクトで活用することが可能です。

2.9. ユーザ定義の壁体データベースの利用方法

ユーザ独自の壁体データベースを作成することが出来る。

登録する壁体データの種類は、建材の熱伝導率・容積比熱あるいは中空層などの熱抵抗である。 BEST-P の上部ツールバーの「ツール」 - 「壁 DB 編集」を選択すると、「ユーザ定義壁体材料特性 値編集画面」が開き、DB の編集が可能となる(図 2-78 ユーザ設定壁体材料特性値編集画面)。

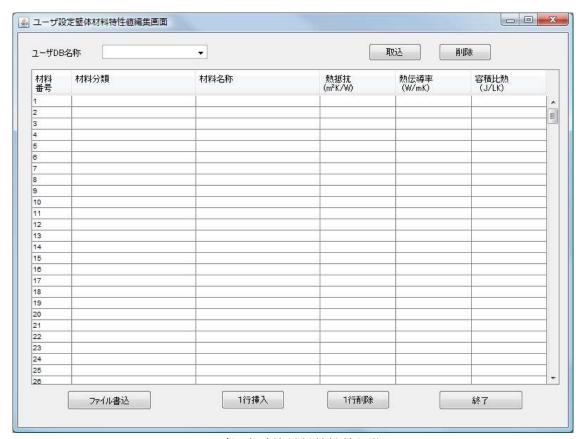


図 2-78 ユーザ設定壁体材料特性値編集画面

ユーザ定義DBの新規作成

- ユーザ定義 DB は、以下の手順にて作成する。
- ①材料分類、材料名称、熱抵抗[m² K/W]、熱伝導率[W/mK]、容積比熱[J/LK]の入力
 - ・材料分類:入力を省略することも可能。
 - ・材料名称:必須入力。同じ DB 内に重複する名称があってはならない。
 - ・熱抵抗:中空層などの場合に入力する。このとき、熱伝導率、容積比熱は空欄とする。
 - ・熱伝導率・容積比熱:建材の場合に入力する。このとき、熱抵抗は空欄とする。
- ②データの編集

「1行挿入」「1行削除」ボタンを利用すると、行の挿入・削除が出来る。

③ユーザ DB の保存

「ユーザ DB 名称」欄にユーザ DB 名を記入し、下部の「ファイル書込」ボタンを押すと、ファイル が保存される。ユーザ DB 名称は、「建築」ー「基本」ー「壁体構造」画面に表示されるライブラリ名としても使用される。

ユーザ定義DBの編集

①編集対象の DB 内容表示

「ユーザ DB 名称」のプルダウンメニューから編集したい DB 名を選択すると、DB 内容が表示される。

②DB 内容の保存・DB の削除

編集が終了し上書き保存する場合は、下部の「ファイル書込」ボタンを押す。

別名保存したい場合は、「ユーザ名称」欄に名称を記入した上で、「ファイル書込」ボタンを押す。 上部の「削除」ボタンを押すと、内容表示されている DB が削除される。削除する場合には、壁体構造入力で指定していないかどうかに注意を払う必要がある。壁体構造入力データで指定しているユーザ DB を削除しそのまま実行すると、エラーメッセージが出力される。

(エラーメッセージは report(共通建築).log ファイルに出力されます。)

外部からのユーザ定義DBファイルの取込み

外部からユーザ定義 DB ファイルを取込む場合は、「取込」ボタンを押し、取込み対象ファイルを選択する。ただし、複数ライブラリを含むファイルの取込みは行わない。 ・・・現在機能追加中。

ユーザ定義DBファイルについて

編集ツールで作成したユーザ定義壁体 DB ファイルは、BEST-P\u00c4work\u00e4userXML フォルダに保存される。ファイル名称は「BUDwallユーザ定義 DB 名.xml」である。

ユーザー定義 DB ファイルは、編集ツールを利用せず、XML ファイルの直接編集でも作成可能であるが、以下のルールに従う必要がある。

- ・ファイル名称は、「BUDwall_」で始まり、拡張子は xml とする。
- ・ファイル名のライブラリは1件のみとする。
- ・BEST-P\sys\XML\stract\xsd\stract\wallDB.xsd に規定されたフォーマットに従う。

壁体構造入力画面でのユーザ定義DBの利用方法

ユーザ定義壁体 DB を作るとすぐに、壁体構造の材料指定に利用できるようになる。「壁体構造」画面を開き、ライブラリとしてユーザ DB 名を選択し、さらに、材料分類、材料名称を選択する。ユーザ DB 編集時に、材料分類を未記入にした場合は、「壁体構造」画面の材料分類として「全て」を選択する。

*材料番号は表示のみで入力不可に変更する予定。

便利な機能 13 壁材料をユーザにて定義可能

ユーザ定義の壁体データベースを活用することで、壁材料をユーザにて定義することが出来ます。

3. 熱負荷計算法

3.1. 室熱平衡式と解法

多数室相互の影響を考慮した計算を行うものとし、室温を未知数とする室熱平衡式をたてる。室iの 顕熱平衡式を表 3-1 に示す。表 3-1 の式(1)は、表中の式(2)以降を代入して整理すると次式にな る。

$$C_{i}(d \theta_{i}/dt)_{n} = K_{i,i,n} \cdot \theta_{i,n} + \sum_{j} K_{i,j,n} \cdot \theta_{j,n} + F_{i,n}$$
 (3.1)

ここに、

 C_i :室iの熱容量[J/K]、

 θ_i 、 $d\theta_i/dt$:室iの室温[℃]、室温微分値[K/sec]

n:現在の時間ステップ

 $K_{i,i}$ 、 F_i :室iの熱平衡式の室jに関する係数[W/K]、定数項[W]

空調システムとの連成計算が不要な場合、左辺を後退差分で表し、現在の自室温 $\theta_{i,n}$ および隣室温 $\theta_{j,n}$ を未知数として扱い、多数室熱平衡式を連立させて解く(インプリシット法と呼ぶ)。空調システムとの連成計算が必要なときには、非線形で不連続な現象が多いシステム側に配慮した解法をとる必要がある。そこでシステム側に適する解法として、4次のルンゲクッタ法を利用して、現在の室温やシステム側状態値を既知として次時間ステップの状態値を求める方法とした(エクスプリシット法と呼ぶ)。エクスプリシット法の場合は、ある程度計算時間間隔を細かくとる必要があるが、その結果、外乱や空調供給に対する室温応答を詳細に把握できるようになる。室顕熱平衡式に関係する、空調供給熱量は、表 3-1の式①~③のような表現が考えられる。①は冷温風吹出しによる供給熱、②は、例えば、換気のみのシーズンの場合の表現で、 Q_{SYSn} はファン発熱などを意味する。③は、放射パネルやコンベクターなどの対流放熱である。換気のみのシーズンに、システム側に制御の働く要素がなければ、②の表現を利用し、インプリシット法により解くことができ、計算時間間隔を短くする必要がなくなる。

表 3-1. 室顕熱熱平衡式

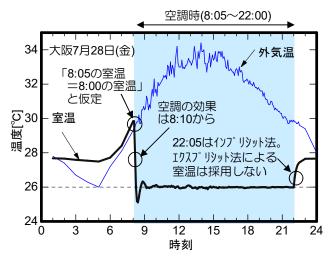
時間ステップ
$$n$$
での室 i の熱平衡式を式(1)で表す。
$$C_{i}(d\theta_{i}/dt)_{n}$$

$$=Q_{W,n}+Q_{IW,n}+Q_{F,n}+Q_{INF,n}+Q_{AIR,n}+Q_{HLn}+Q_{AC,n}...(1)$$
室外側温度 $\theta_{Oe,k,n}$ が既知の壁体・窓負荷 $Q_{W,n}$ [W]は、
$$Q_{W,n}=\sum_{k}\langle K_{Wo,k}\cdot\theta_{Oe,k,n}+K_{Wi,k}\cdot\theta_{i,n}+F_{W,k,n}\rangle \qquad ...(2)$$
隣室温度 $\theta_{j,n}$ が未知の内壁負荷 $Q_{IW,n}$ [W]は、
$$Q_{IW,n}=\sum_{j}\langle K_{Wo,j}\cdot\theta_{j,n}+K_{IWi,j}\cdot\theta_{i,n}+F_{IW,j,n}\rangle \qquad ...(3)$$
家具類や室外側温度が自室温に等しい内壁の負荷 $Q_{F,n}$ [W]は、

$$Q_{F,n}=K_F\cdot heta_{in}+F_{F,n}$$
 ...(4)
すきま風負荷 $Q_{INF,n}[\mathbf{W}]$ は、

$$Q_{INF,n} = C_p \cdot \rho \cdot V_{INF,n} (\theta_{O,n} - \theta_{i,n})$$
 …(5)
室間換気負荷 $Q_{AIR,n}[\mathbf{W}]$ は、

$$Q_{AIR,n} = \sum_{j} C_p \cdot \rho \cdot V_{j,n} (\theta_{j,n} - \theta_{i,n})$$
 ...(6)
内部発熱熱負荷 $Q_{IH,n}[\mathbf{W}]$ は、


$$Q_{IH,n} = \sum_{l} Q_{IHl,n} \qquad \dots (7)$$

空調供給熱量 $Q_{4Cn}[W]$ は、

$$+\sum_{j}C_{p}\cdot\rho\cdot V_{REj,n}\left(\theta_{j,n}-\theta_{i,n}\right)+Q_{SYS,n} \qquad ...(8-2)$$

$$Q_{AC,n}=Q_{SYS,n} \qquad ...(8-3)$$

室内湿度は、室温を未知数とする各室について、同じく未知数として扱う。 顕熱と同様に、エクスプリシット法とインプリシット法を使い分けて多数室潜熱熱平衡式を解く。

エクスプリシット法とインプリシット法の切換え部分を、どのように扱うかが問題となる。図 3-1 は、切換え例を示したものである。8:00 までインプリシット法の計算を行うとすると、8:00 の室温はインプリシット法で計算される。8:05 にエクスプリシット法に切換えられると、8:05 の室温は既知でなければならないため、便宜的に8:05 の室温は8:00 の室温に等しいと仮定するものとする。22:00 までエクスプリシット法の計算を行うとすると、22:00 には次ステップである22:05 の室温が計算されるが、この室温は使用せず、22:05 に行うインプリシット法による室温を採用する。インプリシット法に切り換えた後も22:00~22:30 まで5 分間隔で計算するのは、空調停止時刻の空調供給熱量変化をなるべく階段状変化に近くするためである。

(解法) 8:05~22:00:エクスプリシット法、22:05~8:00:インプリシット法 (時間間隔) 8:00~22:30:5分、

22:30~23:00 30分、23:00~8:00:1時間

図 3-1. 建築計算法の切換え例

3.2. 壁体・梁の計算方法

■壁体の計算方法

壁体伝熱計算法は、計算時間間隔可変に対応できる項別公比法を利用する。表面温度は未知数としないこととし、室熱取得に対する室熱負荷応答 W を利用して、対流・放射を近似的に分離する方法とした。将来、壁面流の計算を組込むことを計画しているため、室温が得られた後に室内各面の表面温度を計算できるようにした。すなわち、透過日射や内部発熱放射成分は、指定された面に吸収されるものとして、面ごとに遅れて生じる対流放熱、すなわち熱負荷を計算する。

表 3-2 に、壁面からの熱負荷の計算式をまとめた。式(4-2)に示すように、隣室側の面に吸収される放射熱の影響も考慮する。式を整理すると、壁面(窓面を除く)からの熱負荷は、式(5)のように表され、W を用いて変換した熱負荷応答に関する壁体伝達関数を使用すればよいことがわかる。具体的な変換は、表 3-3 に示す松尾の方法¹¹を利用した。熱負荷応答に関する壁体伝達関数を近似的に求める際に、今回は固定 5 根¹²により近似する方法と変動 2 根により近似する方法¹³を比較した結果、変動 2 根による近似法を採用することにした。表 3-4 には、項別公比法による時間間隔可変の計算法を示した。文献¹⁴の二等辺三角波励振に対する項別公比法に対して、図 3-2 に示すような不等辺三角波励振を想定したときの式を導き利用した。家具類に関しては、文献¹⁵のオフィス家具類の吸熱応答を利用する。家具類の表面積を適当に仮定し、室熱取得に対する熱負荷応答への家具類の影響も考慮するようにした。

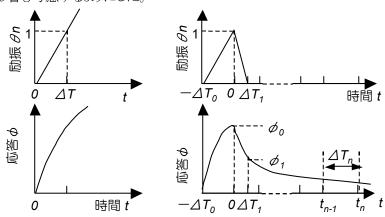


図 3-2. 不等辺三角波励振に対する応答

¹¹松尾:空調負荷計算におけるふく射熱の取扱い、空気調和・衛生工学 pp.5·11、Vol.59、No.4、1985.4、松尾:建物伝熱の近似解法 とその応用、日本建築学会大会学術講演梗概集、pp.133·134、1971.11

^{1&}lt;sup>2</sup>井上・石野・郡他:壁体・室の近似伝熱解法の精度の検討、日本建築学会大会学術講演梗概集、pp.625-626、1987.10

¹³松尾:伝達関数数値逆変換の一解法、日本建築学会大会学術講演梗概集、pp.513-514、1983.9

¹⁴松尾: 大量・迅速処理を目的とした畳込演算の近似解法、日本建築学会関東支部第 41 回学術研究発表会、1970

¹⁵石野・郡:事務所建築における家具類の熱的影響に関する実測研究、日本建築学会計画系論文報告集 pp.59-66、No.372、1987.2

表 3-2. 壁面からの熱負荷の計算法

■壁面からの熱負荷

伝達関数を用いて、壁面からの熱負荷Q(s)の式を示す。Q(s)は、熱取得HG(s)および熱取得に対する熱負荷応答に関する室伝達関数W(s)を用いて、次式で表される。

$$O(s) = HG(s) \cdot W(s) \qquad \dots (1)$$

HG(s)は、室内側相当温度 $\Theta_{re}(s)$ 、室外側相当温度 $\Theta_{oe}(s)$ 、室内側表面の吸収放射熱RI(s)とすると、次式で表される。

$$HG(s) = \Phi_{T0}(s) \Theta_{oe}(s) - \Phi_{A0}(s) \Theta_{re}(s) + RI(s) \dots (2)$$

ただし、
$$\Theta_{re}(s) = \Theta_r(s) + RI(s)/h_t$$
 ...(3)

外壁の場合、

$$\Theta_{oe}(s) = \Theta_{o}(s) + (I(s) - RN(s))/h_{to}$$
 ... (4-1)

室温未知の隣室の場合、

$$\Theta_{oe}(s) = \Theta_{ro}(s) + RO(s)/h_{to}$$
 ... (4-2)

式(1)~(3)より、

$$Q(s) = \Phi_T(s) \Theta_{oe}(s) - \Phi_A(s) \Theta_r(s) + \Phi_R(s)RI(s) \qquad \dots (5)$$

ただし、
$$\Phi_T(s) = \Phi_{T0}(s)W(s)$$
 ...(6-1)

$$\Phi_{A}(s) = \Phi_{A0}(s)W(s)$$
 ... (6-2)

$$\Phi_{R}(s) = W(s) - \Phi_{A}(s)/h_{t}$$
 ... (6-3)

■室内表面温度

室内表面温度 $\theta_s[\mathbb{C}]$ は、表面からの熱負荷 $q[W/m^3]$ と室内側対流熱伝達率 $h_c[W/m^3K]$ より求める。

$$\theta_S = q/h_c$$
 ... (7)

【記号】 h_l 、 h_{lo} :室内側、室外側総合熱伝達率、 $\boldsymbol{\Theta}_o$ 、 $\boldsymbol{\Theta}_r$ 、 $\boldsymbol{\Theta}_{ro}$:外気温、室温、隣室温、I:室外側表面の吸収を開放射量、RO:隣室側表面の吸収放射量(日射熱、内部発熱のほか、隣室周壁温と隣室温の差に起因する放射熱も含む。周壁温度差は、便宜的に前時間ステップの値を使用)、 $\boldsymbol{\Phi}_{To}(s)$ 、 $\boldsymbol{\Phi}_{Ao}(s)$:貫流、吸熱熱取得応答に関する壁体伝達関数、 $\boldsymbol{\Phi}_{T}(s)$ 、 $\boldsymbol{\Phi}_{A}(s)$ 、 $\boldsymbol{\Phi}_{R}(s)$:貫流、吸熱、表面吸収放射熱の熱負荷応答に関する壁体伝達関数

表 3-3. 壁体の熱取得から熱負荷への変換法

熱取得に対する熱負荷応答に関する室伝達関数W(s)は、室内各面の放射吸収係数が表面積比に等しく、対流・放射熱伝達率が壁面によらず同一値と仮定すると、室を構成する壁面の吸熱熱取得 Φ_{A0} $_{i}(s)$ から、次式により得られる 2 kill $_{i}$ 。

$$W(s) = h_c \cdot A_{wt} / (h_c \cdot A_{wt} + h_r \sum_{i} A_{wi} (\Phi_{A0i}(s) / h_t)) \qquad ...(1)$$

ただし、
$$A_{wt} = \sum A_{wi}$$
 ...(2)

貫流、吸熱、室内側表面吸収放射熱の熱負荷に関する壁体伝達関数 $\mathbf{\Phi}_{T}(s)$ 、 $\mathbf{\Phi}_{A}(s)$ 、 $\mathbf{\Phi}_{R}(s)$ を固定根 α_{k} を用いて近似する。すなわち、 $\mathbf{\Phi}_{T}(s)$ の場合、

$$\Phi_{T}(s) = W(s) \Phi_{T0}(s) = A_0 + \sum_{k=0}^{k0} A_k \cdot s / (s + \alpha_k)$$
 ...(3)

今回、 α_k として、次の5つの値を使用した $^{\hat{\chi}\hat{k}3)}$ 。

 $\alpha_{L} = \{0.014, 0.058, 0.24, 1.0, 4.2\} [\times 10^{-3} \text{ 1/sec}]...(4)$

【記号】 h_c 、 h_r 、 h_t : 室内側対流、放射、総合熱伝達率、 A_{wt} : 合計室内表面積、 A_{wi} : 壁体iの室内側表面積、 Φ_{A0i} : 壁体iの吸熱熱取得に関する伝達関数、k0: 根の数、 α_k : 根、 A_0 、 A_k : ステップ応答の係数、その他の記号は表2参照。

表 3-4. 項別公比法による計算時間間隔可変の計算法

項別公比法 $^{\chi m(s)}$ を計算時間間隔可変に対応するよう変更して利用する。まず、不等辺三角波励振に対する応答(図2)を、時系列 ϕ_n (n=0、1、...)で表すと、次式となる。

$$\phi_{0} = A_{0} + \sum_{k=1}^{k0} X_{k,0} \qquad \dots (1-1)$$

$$\phi_{I} = \sum_{k=1}^{k0} Z_{k,I} = \sum_{k=1}^{k0} (R_{k,I} \cdot X_{k,0} - X_{k,I}) \qquad \dots (1-2)$$

$$\phi_{n} \quad (n \ge 2) = \sum_{k=1}^{k0} Z_{k,n} = \sum_{k=1}^{k0} R_{k,n} \cdot Z_{k,n-1} \qquad \dots (1-3)$$

$$\uparrow \subset \uparrow \subset \bigcup \quad R_{k,n} = e^{-\alpha_{k} \cdot \Delta T_{n}} \qquad \dots (2)$$

$$X_{k,n} = \langle A_{k} / (\alpha_{k} \cdot \Delta T_{n}) \rangle \langle I - R_{k,n} \rangle \qquad \dots (3)$$

任意の外乱変動の時系列 θ ,が与えられる場合、時間ステップnでの応答q,は、次式で表される。

$$\begin{aligned} q_{n} &= \phi_{0,n} \cdot \theta_{n} + \sum_{k=1}^{k0} Z_{k,n} & \dots (4) \\ \phi_{0,n} &= A_{0} + \sum_{k=1}^{k0} X_{k,n} & \dots (5) \\ Z_{k,n} &= R_{k,n} \cdot Z_{k,n-1} + (R_{k,n} \cdot X_{k,n-1} - X_{k,n}) \theta_{n-1} & \dots (6) \\ \text{Total } \cup \quad Z_{k,l} &= (R_{k,l} \cdot X_{k,0} - X_{k,l}) \theta_{0} & \dots (7) \end{aligned}$$

【記号】 ΔT_n : 時間ステップnとn-1 との時間差[sec]、 $R_{k,n}$: 項別公比、 $Z_{k,n}$: 過渡項、 $X_{k,n}$: 項別公比法係数、 $\phi_{0,n}$: 不等辺三角波応答の時間0での値

■梁の計算方法

柱または梁が外壁側にある場合は、外壁として入力する。室内にある場合、天井内にあるときは、天井・スラブ、居室部分にあるときは内壁に換算して入力をする。以下に、柱、梁の換算方法を場合毎に分けて説明する。

i) 天井のないときの梁の入力

梁を間仕切り壁(平面内壁)に等価置換を行う。吸熱すべき表面積を合わせて実質部容積を合わせる。

- ・梁の高さ:h(=梁せい-スラブ厚)
- •梁幅:d
- ・梁の総長さ:L

梁により余分に生じた表面積は、2hL(梁の底面はスラブ底面減少分と等しいので無視)。置換すべき内壁は、厚さd、面積2hLとなる。内壁の表面積は両面あるが、計算上は片面(計算室側)の吸熱応答しか扱わないのでhLではなく、2hLとなる。

ii) 天井内の梁の入力

天井内梁の扱い方は、天井プレナムを空気層とせず梁と空気の混ざった層と考える方法と梁容積 分をスラブの厚さに置き換えてスラブを厚くするという方法が考えられる。ここでは簡易に後者について説明する。

一つの梁による断面積の増加分は dh なので、全ての梁による体積増加分は、dhL となる。よってスラブに増加すべき梁分厚さは、床面積 S として、dhL/S となる。

なお、梁の総長さ L ついてであるが、梁長さ×梁本数である。ここに梁の本数の数え方は、隣室境界の梁のときは 0.5 本、外気との境界のときは外壁として計算に含めるので 0 本とし、梁形状が複数あるときは平均的な梁を仮想してもいいし、種類毎別内壁として(あるいは床増し分として)扱っても

良い。

iii)柱の入力

柱についても梁と同様に、柱の室内に出ている部分は内壁に、天井内部分は床厚の増し分として 置換する。

- ・柱の大きさ:a×b
- ・階高:h_f(厳密には階高-スラブ厚とした方がよい)
- ·天井高:h。
- ·柱本数:n
- •床面積:S

室内柱表面積(天井下部分)は、2(a+b)nh。となる。この柱表面積と等しい面積の内壁に置換し、柱体積と等しい体積の内壁とする。内壁の厚みをxとすると、

 $x \cdot (a+b) nh_c = abnh_c$

•••内壁面積 2(a+b)nh。

x=ab/(a+b)

天井内体積は、abn(h-h。)であるから、床増し厚は、abn(h-h。)/Sとなる。

柱の本数の数え方は、隣室との境界のとき 0.5 本、2 面隣室という隅角部のとき 0.25 本、外気と接するときは外壁扱いするので 0 本とする。

3.3. 家具の計算方法

家具類に関しては、文献¹⁶のオフィス家具類の吸熱応答を利用する。家具類の表面積を適当に仮 定し、室熱取得に対する熱負荷応答への家具類の影響も考慮するようにした。

矩形の RC 梁ではなく、H 形鋼の梁の影響を考慮したい場合には、梁を家具類と同様に考えて入力をすることが可能である。家具類の計算では、熱的な遅れを実験値と理論値から逆算して求めている。すなわち、空気と同様の扱いの計算ではない。矩形の RC 梁の場合は、外壁や内壁に含めて換算する方法を示したが、H 形鋼の梁の場合は、断面が矩形でなく H 形であるため断面積を求めるのが面倒なのと、RC の床と鋼の梁では材質が異なるため、外壁や内壁に含めて換算する方法ではなく、家具類とみなして入力する方法をとる。梁を家具類に置き換える考え方は以下のとおり。

- ①全ての梁の重量を求める(梁伏図などから大梁、中梁、小梁毎に寸法、本数から求める)
- ②全ての梁の熱容量を求める(H 形鋼の比熱は 461 [J/(kg·K)]とする)
- ③家具の熱容量の入力に合わせて、全ての梁の熱容量を室容積で割った値を求める(このときの室容積の単位は[lit]であることに注意)

以上で梁を家具類とみなした熱容量が求まる。

3.4 窓の計算方法

窓面からの熱取得は、表 3-5 の式(1)に示すように、窓透過日射を含めず、貫流熱取得、室内側表面に吸収される放射熱(内部発熱放射成分など)による熱取得、日射熱取得の対流・長波放射成分の合計として表す。熱取得から熱負荷を求める際には

表 3-2 の式(1)を使用する。壁体伝熱計算と同様に、項別公比法を用いて計算する。このように窓

¹⁶ 石野・郡:事務所建築における家具類の熱的影響に関する実測研究、日本建築学会計画系論文報告集 pp.59-66、No.372、1987.2

面からの熱負荷を計算することで、

表 3-2 の式(7)を使用して、窓表面温度を求めることが可能となる。窓透過日射は、床・家具面に吸収されるものと仮定した。日射熱取得の各成分は、表 3-5 に示すように、日射熱取得率と透過率、長波放射成分係数を用いて計算する。現在、計算可能な窓は、一般窓(ブラインド内蔵複層ガラス含む)及びエアフローウィンドウ(AFW)である。窓の熱性能値は、データベース化された一般窓の値を用いて、日射遮蔽性能値の場合は入射角の違いを、熱貫流率の場合は必要に応じて中空層の熱抵抗の違いを補正し、AFW に対してはさらに窓通気量による補正を行う。窓熱性能値の具体的な計算法は、文献^{17,18,19}による。なお、現状では、窓枠(サッシ)は考慮されていない。今後対応予定である。

BEST では、昼光調光計算も可能である。基本的には HASP-L で採用している計算法と同じで、ユーザー入力データを複雑化せず、切断面での照度分布を計算するものである²⁰。

表 3-5. 窓面からの熱負荷と日射熱取得の計算法

■窓面からの熱負荷

窓面からの熱負荷は、熱取得を求めた上で、表2の式(1)をもとに計算する。熱取得 $HG[W/m^2]$ を、外気温 $\theta_o[\mathbb{C}]$ 、室温 $\theta_r[\mathbb{C}]$ 、室外側表面の吸収夜間放射量 $RN[W/m^2]$ 、室内側表面の吸収放射量 $RI[W/m^2]$ 、日射熱取得の対流・長波放射成分 $HG_{SR,C+LR}[W/m^2]$ を用いて次式で表す。

 $HG=U(\theta_o-RN/h_{to}-\theta_r)+RI(I-U/h_t)+HG_{SR,C+LR}$...(1)

【記号】U: 窓熱貫流率 $[W/m^2K]$ 、 h_v h_{to} : 室内側、室外側総合熱伝達率 $[W/m^2K]$

■日射熱取得

日射熱取得 $HG_{SR}[W/m^2]$ の短波放射成分 $HG_{SR,SR}$ 、長波放射成分 $HG_{SR,LR}$ 、対流成分 $HG_{SR,C}[W/m^2]$ は、次式より求められる。

$$\begin{array}{lll} HG_{SR,SR} = I_D \cdot \tau_D + I_S \cdot \tau_{SKY} + I_G \cdot \tau_{GR} & ...(2) \\ HG_{SR,LR} = k_{LR} (HG_{SR} - HG_{SR,SR}) & ...(3) \\ HG_{SR} = I_D \cdot \eta_D + I_S \cdot \eta_{SKY} + I_G \cdot \eta_{GR} & ...(4) \\ HG_C = HG_{SR} - HG_{SR,SR} - HG_{SR,LR} & ...(5) \end{array}$$

【記号】 I_D 、 I_S 、 I_G : 窓面の直達、天空、地表面反射日射量 $[W/m^2]$ 、 τ_D 、 τ_{SKV} τ_{GR} : 直達、天空、地表面反射日射に対する透過率[-]、 k_{LR} : 長波放射成分係数[-]、 n_D 、 n_{SKV} n_{GR} : 直達、天空、地表面反射日射に対する日射熱取得率[-]

3.5. 外部日除の計算方法

外部日除けは、水平ルーバ、垂直ルーバの計算が可能であり、隣棟の影響は、対象窓の地上高さ、 隣棟までの距離と隣棟高さを入力して考慮する方法を現在使用している。

3.6. 隙間風・ゾーン間換気の計算方法

隙間風計算法は、換気回数と外壁漏気係数法である。外壁漏気係数法は、外壁面積法21で定義される3段階の漏気係数を利用している。方位別に内外差圧と外壁・窓面積から隙間風を算出する。 ゾーン間換気量は、ゾーン間境界長さと境界長さ当たり風量を入力する方法である。

 $^{^{17}}$ 郡・石野:熱負荷計算のための窓熱性能値に関する研究、日本建築学会環境系論文集 No.600、pp.39-44、2006.2

¹⁸ 郡・石野他: 直達日射に対する一般窓日射遮蔽性能値の実用的推定法、空気調和・衛生工学会大会学術講演論文集、pp.369-372、2007.9

¹⁹ 郡・村上・石野・長井:建築エネルギー・シミュレーションツール BEST の開発 第3報 建築熱計算法と設備との連成法、日本建築学会大会学術講演梗概集。2007.9

²⁰ HASP-L 利用マニュアル(1980)、板硝子協会省エネルギー委員会、日本建築設備土協会

²¹早川・戸河里:煙突効果と風力による漏気量の予測 高層事務所建物の煙突効果の研究(その3)、日本建築学会計画系論文報告集 No.407、pp.47·55、1990.1

3.7. 内部発熱の計算方法

3.7.1. 人体

人体発熱負荷は、Two-Node モデルの簡易モデルを利用して対流、放射、潜熱放熱比率を決める 方法とした²²。入力値の代謝量、着衣量、気流速度、前時間ステップの作用温度と湿度から、放熱 量各成分を計算する。

3.7.2. 照明

照明発熱は、最大ワット数を入力する。ここで言うワット数は、ランプだけでなく安定器も含めた照明器具全体の発熱量である。照明点灯率は、任意の時刻のスケジュール値入力が可能で、入力値をもとに、各時間ステップの値を補間して求める。

居室と天井裏を別ゾーン(別室)として計算する場合には、居室ゾーンと天井裏ゾーンに照明発熱を 按分して入力すればよい。

3.7.3. 機器発熱

機器発熱は、最大ワット数や最大顕熱・潜熱発熱量を入力する。機器使用率などは、任意の時刻の スケジュール値入力が可能で、入力値をもとに、各時間ステップの値を補間して求める。

3.8. 熱的快適性の計算方法

室やシステムの熱平衡状態が得られた後、温熱環境指標の計算を行う。PMV を求めることとし、MRT の代わりに各ゾーンの AST²³を用いて計算する。

3.9. スケジュールの計算方法

BEST では、細かなスケジュール入力が可能なように、年間スケジュール・週間スケジュール・時刻変動スケジュールを定義する。①季節(指定した期間)に応じて時刻変動スケジュールを切り替えることが出来る。②任意時刻におけるスケジュール値を入力し、自動補間するといった特徴がある。

 $^{^{22}}$ 石野・郡・佐藤:人体 Two·Node Model の簡易化と応用に関する研究、日本建築学会計画系論報告文集 No.451、pp.67-74、1993.9 23 AST とは、周囲面温度の面積加重平均値のことである。

3.10.最大負荷の計算方法

最大負荷は、拡張アメダス設計用気象データ^{24,25}を用いた日周期定常計算により求めている。ここでは、拡張アメダス設計用気象データの概要と、最大負荷計算法について述べる。

3.10.1. 拡張アメダス設計用気象データの概要

1981~2000 年の 20 年間の拡張気象データをもとに、842 地点について、従来と異なる新しい考 え方で作成されたデータが、拡張アメダス設計用気象データである。従来の TAC 法による気象デ 一タは、気象要素別に、時別に過酷な気象観測値を選んで作成されているため、過剰に厳しい条 件であるとの指摘がされてきた。その反面、建物や空調装置の種類によって、過酷となる気象の特 徴が異なることを考慮できないため、過小負荷が得られることもあった。 拡張アメダス設計用気象デ ータは、これらの点を改良し、20年間の気象から、過酷気象日を24日選定し、選ばれた日の気象 要素を平均化処理して作成されていて、より現実的な気象データとなっている。また、天候の異なる 複数タイプのデータが用意され、暖房設計用には、t-x 基準、t-Jh 基準データの 2 タイプ、冷房設 計用には、h-t 基準、Ic-t 基準、Is-t 基準の 3 タイプがある。t-x 基準、t-Ih 基準、h-t 基準データ には、さらに、それぞれ年基準危険率 0.5、1、2%のデータがある。年基準危険率とは、ある気象値 が基準の値を超過して厳しくなる、年間通しての確率で、ASHRAE でも採用され、今後国際的にな ると考えられる危険率表示である。年基準0.5、1、2%は、従来よく使われてきた4ヶ月基準危険率で 表すと 1.5、3、6%となる。 年基準危険率 1%を例にすると、t-x 基準、t-Jh 基準データは日平均気温 (t)、h-t 基準データは日平均エンタルピ(h)が、設計用データの値より厳しくなる日が年間通して1% の確率という意味になる。BEST の最大負荷計算では、暖房設計用 t-x 基準、t-Jh 基準は 1%、冷房 設計用 h-t 基準は 0.5%を使用することを基本とした。 各気象タイプの特徴は、次のようにまとめられ る。

(1) 暖房設計用 t-x 基準データ

外気温と絶対湿度の厳しいデータで、気温の日較差が大きく、ある程度の日射量がある。外気負荷と蓄熱負荷を処理する空調機のように、エンタルピと気温の影響を強く受ける装置に適するように作成された。

(2) 暖房設計用 t-Jh 基準データ

ペリメータ機器のように気温の低い曇天日に負荷が大きくなる装置に適するように作成された。日最 高気温が低く、湿度はやや高めで、日射量は小さい。

(3) 冷房設計用 h-t 基準データ

外気導入を行うインテリアゾーン空調機のようにエンタルピと気温の影響を強く受ける装置に適するように作成された。エンタルピ、気温が厳しく、天空日射量が比較的大きい。このため北ゾーンのペリメータ機器にも適している。

(4) 冷房設計用 Jc-t 基準データ

西、東ゾーンペリメータ機器のように西、東面日射の影響を強く受ける装置、住宅用空調装置など のように多方位の日射の影響を受ける装置に適するように作成された。水平面、西面、東面日射量

²⁴ 日本建築学会編: 拡張アメダス気象データ 1981-2000、気象データシステム

²⁵ 郡・石野:暖房設計用 t·x 基準、t·Jh 基準気象データの提案、日本建築学会環境系論文集、No.596、pp.83·88、2005.10、および、冷房設計用 h·t 基準、Jc·t 基準、Js·t 基準気象データの提案、日本建築学会環境系論文集、No.599、pp.89·94、2006.1

が強く、気温も厳しい。

(5) 冷房設計用 Js-t 基準データ

南ゾーンの設計用気象データである。北緯29°以北の一般地方は9月、北緯29°以南の南方地方は10月の南面日射の強いデータである。秋に近い時期のデータであるため気温、エンタルピはh-t 基準、Ic-t 基準より低い。

3.10.2. 予冷熱計算法と最大熱負荷の決め方

各タイプの設計用気象データに対して日周期定常計算を行う。助走計算期間中も同じ気象が続くと 想定して計算を行い、最終日の結果のみを出力する。暖房設計・冷房設計の両方の計算を指定し た場合、暖房 2 タイプ、冷房 3 タイプの設計用気象データによる日周期定常計算結果の時刻変動 値が連続出力される。最大負荷計算に必要となる予冷熱計算法と、複数タイプの気象による計算結 果から設計用最大熱負荷を決める方法について以下に説明する。

(1) 予冷熱計算26

予冷熱時間帯は、顕熱、潜熱別々に予冷熱専用の装置容量があるものと仮想し、予冷熱終了時刻に丁度設定温湿度に達する最小の容量である場合の状態を求める。基本的に予冷熱時間は自由に設定可能である。ただし、予冷熱中に日付が変わるケースは計算対象としない。住宅のように、1日に何度も空調のオンオフを行う間々欠運転に対して、空調を入れるたびに予冷熱時間を設定することが可能である。

(2) 最大負荷の決め方

暖房 2 タイプ、冷房 3 タイプの設計用気象データによる計算結果から最も大きな冷房、暖房負荷値をそれぞれ冷房設計用、暖房設計用最大負荷として採用すればよい。

3.10.3. 計算上の注意事項

拡張アメダス設計用気象データは、現実的な気象であるという特徴をもつ代わりに、従来の設計用気象データに比べて厳しいわけではない。使用に当たり、気象以外の計算条件も現実的な条件に設定し、これまで危険側条件に仮定されていた部分は見直すとよい。日周期定常最大負荷計算は、過酷な気象の日が連続すると仮定されるため、この点は負荷を大きく見積もる方向に作用するものの、休日明けの蓄熱負荷の増大を考慮することはできない。従来、厳しすぎる設計用気象データの影響を修正するために、予冷熱時間を実際より長めに設定することがあったが、拡張アメダス設計用気象データを利用する場合にはその必要はない。週後半の通常日(休日の影響が少ない日)の予冷熱時間を想定して最大負荷計算を行い、実際の運転においては、必要に応じて休日明けの予冷熱時間を延ばせばよいと考えることもできる。BESTでは、1時間より短い予冷熱時間の設定も可能であり、30分程度の予冷熱時間を設定するとよい。

²⁶ 郡・村上・石野・長井:外皮・躯体と設備・機器の総合エネルギーシミュレーションツール「BEST」の開発(その 45) 最大熱負荷計算のための予冷熱計算機能、空気調和・衛生工学会大会学術講演論文集、2009.9

4. 昼光の計算法

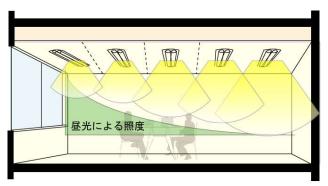


図 4-1. 昼光利用による照明出力の低減

4.1. 昼光利用効果

図 4-1 に示すように、昼光によって得られる照度を作業面に寄与するものと見なすことによって、人工照明の出力が抑制可能となる。照明出力の抑制は二次的に室内部発熱の低減にも寄与し、建物エネルギー消費量の抑制効果が見込める。

4.2. 昼光照度の算出

照度は室内机上面において評価する。照度算出式は表 4-1 に示すように、窓面のブラインド状態に応じて使い分けるモデルとなっている。照度は直接照度と間接光照度の合計として算出し、間接光については切断面公式を用いる。照度の計算においても窓の熱取得と同様に、図 4-2 に示すように直射・天空・地物反射の成分別に算出する。

表 4-1. 昼光照度の計算式

$E_{Daylight} = Ed + Er$	(1)
■ブラインド開のとき	
$Ed = \tau_F \cdot M \cdot R \cdot (U_1 + \rho_{CC} \cdot D_{GL} \cdot U_{CG} \cdot U_2) \cdot E_S$	(2)
$Er = \{ (F_1 \cdot \rho_1 + F_2) \cdot \rho_2 \} / \{ S_L \cdot (1 - \rho_1 \cdot \rho_2) \}$	(3)
$F_I = \tau_F \cdot M \cdot R \cdot U_{GS} \cdot S_{UG} \cdot E_S$	(4)
$F_2 = \tau_F \cdot M \cdot R \cdot U_{GG} \cdot \rho_{GL} \cdot D_{GL} \cdot S_{UG} \cdot E_S$	(5)
■ブラインド閉のとき	
$Ed = 2 \cdot \delta \omega_I \cdot M \cdot R \cdot (\tau_F \cdot U_{GS} \cdot U_P \cdot E_S + \tau_D \cdot U_A \cdot E_{DO})$	(6)
$Er = \{ (F_1 \cdot \rho_1 + F_2) \cdot \rho_2 \} / \{ S_L \cdot (1 - \rho_1 \cdot \rho_2) \}$	(7)
$F_{I} = \delta\omega_{I} \cdot \tau_{F} \cdot M \cdot R \cdot U_{GS} \cdot S_{UG} \cdot E_{S} + \delta\omega_{I} \cdot \tau_{D} \cdot M \cdot R \cdot S_{A} \cdot E_{DO}$	(8)
$F_2 = \delta\omega_2 + \tau_F \cdot M \cdot R \cdot U_{GS} \cdot S_{UG} \cdot E_S + \delta\omega_2 \cdot \tau_D \cdot M \cdot R \cdot S_A \cdot E_{DO}$	(9)

■記号

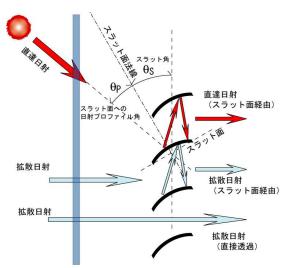


図 4-2. ブラインドの光学特性モデル

4.3. 照明との連成計算

机上面における照度は昼光照度と照明による照度の和は、図 4-3 に示す照明位置・机上面計算 点を想定すると次式で表せる。設定照度に対して昼光照度が不足する場合は照明出力率を求める。 ここで、各ゾーンの照明による机上面計算点への照明勢力は、事前に算出しておく。

$$E_{(i)} = Eo_{(i)} + \sum_{j}^{4} \alpha_{j} \quad E_{lamp(i,j)}$$
 (9)

ここに、 E(i) : 机上面位置 i における照度 [lx]

Eo(i) : 机上面位置 i における自然光による照度 [lx]

Elamp(i,j): 机上面位置 i におけるゾーン j の照明による照度[lx]

α j :ゾーン j の照明の出力率[-]

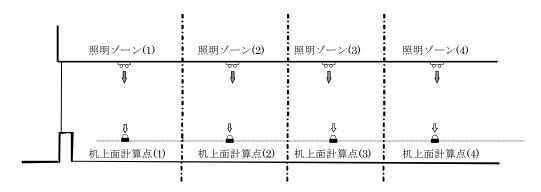


図 4-3. 昼光および照明計算点

5. ユーザーによる気象データの作成方法

5.1. EPW データの作成方法

EPW データは、図 5-1 に示すように、カンマ(,)で区切られた CSV データ形式である。ヘッダー部 (地点情報、データ期間、休日設定等)とデータ部(1年間の1時間毎の気象データ)に分かれている。

図 5-1. EPW データの概要(JPN_Tokyo Hyakuri の例)

表 5-1 に、各行の概要とデータ要素と BEST で使用するデータを示す。 BEST で取り込んでいるデータは、灰色で示す要素である。

表 5-1. EPW データ要素²⁷と BEST で使用するデータ(灰色部)

	HILL THE	ゴーカ亜主
4 /	概要	データ要素
1 行目	LOCATION	LOCATION, Name of City(都市名), State or
		Province, Country(国名), Source, WIMO, Latitude(緯
		度),Longitude(経度),TimeZone,Elevation(標高)
2 行目	DESIGN CONDITIONS	Number of Design Conditions, Design Condition
		Source, Design Condition Type, Coldest month, Heating
		DB, Humidification DP/MCDB and HR, Coldest month
		WS/MCDB, MCWS/PCWD to 99.6% DB, Design
		Condition Type, Hottest month, Hottest month DB range,
		Cooling DB/MCWB, Evaporation DB/MCWB,
		MCWS/PCWD to 0.4% DB, Dehumidification DP/MCDB
		and HR, Enthalpy/MCDB, Extreme Annual WS, Extreme
		MAX WB [°C], Extreme Annual DB, n-Year Return Period
		Values of Extreme DB
3 行目	TYPICAL/EXTREME	Number of Typical/Extreme Periods, Typical/Extreme
	PERIODS	Period 1 Name, Typical/Extreme Period 1 Type, Period 1
		Start Day, Period 1 End Day, Typical/Extreme Period 2
		Name, Typical/Extreme Period 2 Type, Period 2 Start Day,
		Period 2 End Day, Typical/Extreme Period 3 Name,
		Typical/Extreme Period 3 Type, Period 3 Start Day,
		Period 3 End Day, · · ·
4 行目	GROUND	Number of Ground Temperature Depths, Ground
	TEMPERATURES	Temperature Depth(1),
5 行目	HOLIDAYS/DAYLIGHT	LeapYear Observed, Daylight Saving Saving Start
	SAVINGS	Day, Daylight Saving Saving End Day, Number of Holidays
6 行目	COMMENTS 1	
7 行目	COMMENTS 2	
8 行目	DATA PERIODS	DATA PERIODS, Number of Data Periods, Number of
		Records per hour(1 時間毎のデータ数),
		Name/Description, Start Day of Week (1月1日の曜日),
		Daylight Saving Start Day(サマータイム開始日), Daylight
		Saving End Day(サマータイム終了日)
9 行目	1 年間の 1 時間毎の気	Year, Month, Day, Hour(時), Minute(分), Data
以降	象データ	Source and Uncertainty Flags, Dry Bulb Temperature(乾
		球温度)[℃], Dew Point Temperature [℃], Relative
		Humidity(相対湿度) [%], Atmospheric Station Pressure
		[Pa], Extraterrestrial Horizontal Radiation [Wh/ m²],
		Extraterrestrial Direct Normal Radiation [Wh/ m²],
		Horizontal Infrared Radiation Intensity from Sky(大気放射
		量) [Wh/m²], Global Horizontal Radiation(水平面全日射
		量) [Wh/㎡], Direct Normal Radiation(法線面直達日射
		量) [Wh/m²], Diffuse Horizontal Radiation(水平面天空日
		射量) [Wh/ m³], Global Horizontal Illuminance [lux],
		Direct Normal Illuminance [lux], Diffuse Horizontal
		Illuminance [lux], Zenith Luminance [cd/m²], Wind
		Direction(風向) [deg], Wind Speed(風速) [m/s], Total Sky
		Cover [-], Opaque Sky Cover [-], Visibility [km], Ceiling
		Height [m], Present Weather Observation [-], Present
		Weather Codes [-], Precipitable Water(降水量) [mm],
		Aerosol Optical Depth [thousandths], Snow Depth [cm],
		Days Since Last Snowfall [-], Albedo [-], Liquid
		Precipitation Depth [mm], Liquid Precipitation Quantity
		[hr]
		[111]

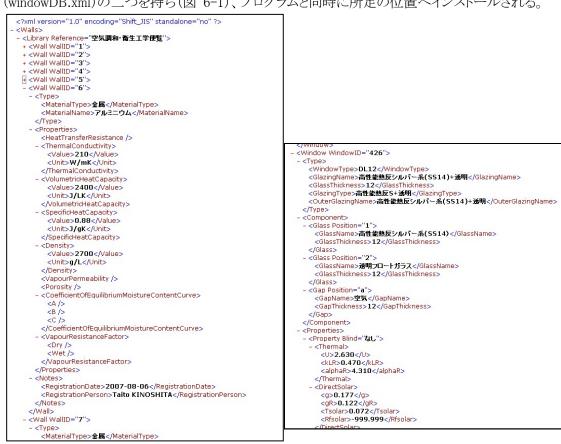
-

²⁷ 「Auxiliary EnergyPlus Programs (May 24, 2012)」を基に作成 http://apps1.eere.energy.gov/buildings/energyplus/pdfs/auxiliaryprograms.pdf

EPW データフォーマットを利用して任意の気象データを作成する場合、EPW データをテキストエディタ等で開いて修正することができる。表 1 に示す BEST で使用するデータ要素(灰色部)を、必要に応じて書き換えるとよい。

(注意点)

- ・BEST で計算が可能な EPW データは、1 時間間隔の気象データである。また、EPW データは 1 年間分の気象データを作成する必要がある。
- ・BEST では EPW データを標準年気象データとして読み込んでいるため、EPW データの年、月、日、曜日、休日を示すデータ要素は無効である。作成した気象データの最初のデータが、BEST における標準年気象データとしている 2006 年 1 月 1 日(日曜日)として計算される。また、閏年の計算が不可能なため、2/29 の気象データが存在する場合、以降の計算が一日ずつずれて計算される。対応策として、作成した EPW データから 2/29 の気象データを削除、もしくは一日ずれた計算を可とし 12/30 までの計算を行う方法がある。曜日設定については、「2.2.8 週間スケジュール」を参考に、各曜日のモード(平日/休日)を変更する等、適宜調整が必要である。
- ・表 5-1 の 1 行目に記載の"Name of City"、"Country"、"Elevation"は、表示用に BEST で読み込まれているデータで、計算には使用されない。
- ・ BEST では 1 時間間隔の EPW データのみ計算可能なため、表 5-1 の 8 行目に記載の "Number of Records per hour"=1 とする。
- ・BEST ではサマータイムの計算は行えないため、表 5-1 の 8 行目に記載の"Daylight Saving Start Day"=1/1、"Daylight Saving End Day"=12/31 とする。
- ・表 5-1 の 9 行目以降に記載の 1 年間の 1 時間毎の気象データのうち、"Precipitable Water [mm]"以降は省略可能である。その場合は、"Precipitable Water [mm]"=-1 として計算される。 "Precipitable Water [mm]"より前のデータについては省略できない。BEST で取り込んでいないデータについてもダミーの値を入れる必要がある。
- ・表 5-1 の 9 行目以降に記載の 1 年間の 1 時間毎の気象データのうち、BEST で使用するデータ要素(表 1 の灰色部)に欠測データがあると、計算が途中でストップする(エラー表示は無し)。線形補完等により適当と思われる値に修正する必要がある。


6. 壁体材料・窓ガラスの物性値データベースと入力データXML構成

6.1. データベースの構成

本プログラムでは壁・床・天井などの壁体に使用される材料の熱物性値と窓ガラスの光熱性能値をデータベースとして用意しており、ユーザーが壁体構成や窓条件の設定で材料名称や窓ガラス品種を選択するだけで、データベースから計算に必要な物性値を呼び出し、壁体としての熱性能値や窓ガラスの状態に応じた光熱性能をプログラム内部で換算する。

データベース形式には、本プログラムが将来的にネットワーク利用に拡張されることを考慮して、現在様々なデータベースの分野で普及が進んでいる XML (eXtensible Markup Language) 形式を採用した。XML とは、近年登場した新しいデータ形式で、HTML (HyperText Markup Language) と同様にタグ(tag)と呼ばれる情報がデータ中に埋め込まれるマークアップ言語の一つであり、インターネットでの利用が期待されている。

データベースファイルは、壁体材料の熱物性値用(wallDB.xml)と窓ガラスの光熱性能用(windowDB.xml)の二つを持ち(図 6-1)、プログラムと同時に所定の位置へインストールされる。

(a)壁体材料データベース(wallDB.xml)

(b)窓ガラスデータベース(windowDB.xml)

図 6-1. XML 形式データベースの例

6.2. 壁体材料データベース

壁体材料データベース"wallDB.xml"は 4 つのライブラリを持ち,各ライブラリには多数の壁体材料が登録されている(表 6-1)。ユーザーが壁体構成の設定時にデータベースから材料名称または材料 ID を選択して、その厚みを入力することで、データベースに登録されている各材料の熱物性値から壁体としての熱性能をプログラム内部で計算する。また、ユーザーが新たな材料の熱物性値をデータベースへ追加登録する機能も備えている。

各材料は熱物性の項目として 9 つの要素を持つ(表 6-2)。平衡含水率曲線は 3 つの係数を用いて次式で表される。

$$u = a \left(1 - \frac{\ln(RH/100)}{b} \right)^{-\frac{1}{c}}$$
(4.1)

ここに, u:平衡含水率(-)

RH :相対湿度(%)

a,b,c :係数(-)

図 6-2 に壁体材料データベースの XML 階層構造を、表 6-4 に壁体材料データベースに登録されている材料種類の ID と名称のリストを示す。

なお、表 6-3 に、壁体材料データベースの XML ファイル"WallDB.xml"内の各要素と属性について用語と記入方法の説明を示す。BEST プログラムに標準で付属している壁体材料データベース "WallDB.xml"をテキストエディタや XML エディタなどで直接編集することで、ユーザ独自の材料物性値を追加登録することも可能である。

表 6-1. 壁体材料データベースのライブラリと登録材料数

ライブラリ名	登録材料数
空気調和・衛生工学便覧28	63
EN 12524:2000 ²⁹	140
建築材料の熱・空気・湿気物性30	25
空気調和·衛生工学会 HASPEE31	85

 $^{29}\,$ EN 12524:2000, Building materials and products – Hygrothermal properties, Tbulated design values

²⁸ 空気調和·衛生工学便覧 第 13 版

³⁰ 建築材料の熱・空気・湿気の物性値, 日本建築学会

³¹ 試して学ぶ熱負荷 HASPEE~新最大熱負荷計算法~, 空気調和・衛生工学会

表 6-2. 壁体材料データベースの熱物性要素

熱物性	単位	備考
熱伝達抵抗	m ² K/W	中空層のみ
熱伝導率	W/m ² K	
容積比熱	J/LK	
比熱	J/gK	
密度	g/L	
湿気伝導率	kg/ms(kg/kgDA	
)	
空隙率	$\mathrm{m}^3/\mathrm{m}^3$	
平衡含水率曲線の係	_	3 つの係数 a,b,c
数		
透湿抵抗ファクタ	_	Dry 時, Wet 時

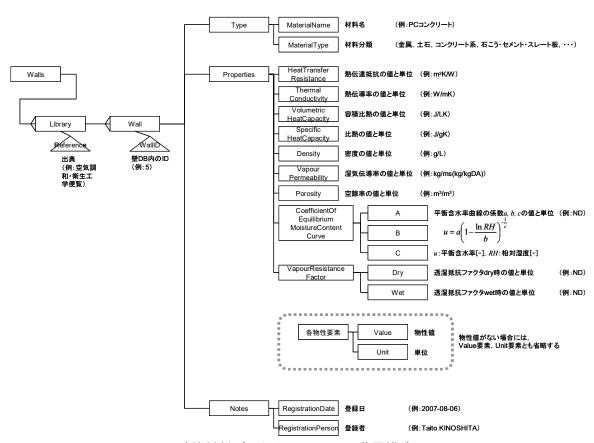


図 6-2. 壁体材料データベースの XML 階層構造

表 6-3 壁体材料データベースのタグ名と説明

XML タグ (要素と属性)	用語	説明
Walls		WallDB.xml の最上階層です。
Library		
Reference	出典	ライブラリ名称を記入します。
Wall		
WallID	材料番号	ライブラリ内で固有に割り振られた材料番号(整数
Walii	ATTEN A	を記入します。
Туре	L Lital to	
MaterialName	材料名	材料名称を記入します。
MaterialType	材料分類	材料分類の名称を記入します。
Properties		
HeatTransferResistance	熱伝達抵	中空層の熱伝達抵抗の値と単位[m²K/W]を記入
	抗	ます。層の厚みによらず、この値を層の熱伝達抵抗と
	3, 4	て用いて、壁体の熱貫流率が計算されます。固体材料
		などの場合に"ThermalConductivity"に記入していれ
	44.4.556.4.	ば、本項目には記入不要です。
ThermalConductivity	熱伝導率	材料の熱伝導率の値と単位[W/mK]を記入しる
		す。この値と層の厚みから、この層の熱抵抗が計算され
		ます。中空層などの場合に"HeatTransferResistance
		に記入していれば、本項目には記入不要です。
VolumetricHeatCapacity	容積比熱	材料の容積比熱の値と単位[J/LK]を記入します。
v orallectror reat Capacity	71 1970 111	"SpecificHeat Capacity"と"Density"の積となります。「
		空層などの場合に"HeatTransferResistance"に記入し
		ていれば、本項目には記入不要です。
SpecificHeatCapacity	比熱	材料の比熱の値と単位[J/gK]を記入します。(任意)
Density	密度	材料の密度の値と単位[g/L]を記入します。(任意)
VapourPermeability	湿気伝導	材料の湿気伝導率の値と単位[kg/ms(kg/kgDA)]を
•	率	記入します。(任意)
Porosity	空隙率	材料の空隙率の値と単位[m³/m³]を記入します。
1 of only	工以一	(任意)
C 95 - i + O 95 i l - i	平衡含水	(江水)
CoefficientOfEquibrium		
MoisutureContentCurve	率曲線の係数	
А, В, С		材料の平衡含水率曲線(次式)の係数 a,b,c の値。
		単位[-]を記入します。(任意)
		$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$u = a \left(1 - \frac{\ln RH}{h}\right)^{\frac{1}{c}}$
		$\begin{pmatrix} a-a \\ b \end{pmatrix}$
		u : 平衡含水率(-)
		RH :相対湿度(-)
W D	子石を仕つ	a,b,c :係数(-)
VapourResistanceFactor	透湿抵抗フ	
	アクタの値	
Dry, Wet		材料の Dry 時および Wet 時の透湿抵抗ファクタの
		値と単位を記入します。(任意)
Notes		
RegistrationDate	登録日	登録日を記入します。(任意)
RegistratiionPerson	登録者	登録者を記入します。(任意)
	空)外(日	
各物性要素		
Value	物性値	各物性要素の下に Value 要素を設けて, 物性値を
		記入します。物性値がない場合には Value 要素, Uni
		要素とも省略します。
Unit	単位	各物性要素の下に Unit 要素を設けて, 各物性要
Offic	714	素ごとの規定の単位を記入します。物性値がない場合
		米ことの規定の単位を記入します。物性値がない場合には Value 要素, Unit 要素とも省略します。
	i e	- Ling Valua 田元 Unit 田元 Vit 名W L 正定

※現行プログラムでは、物性値は、中空層の場合は熱伝達抵抗"HeatTransferResistance "のみ、固体材料などの場合は熱伝導率"ThermalConductivity "および容積比熱"VolumetricHeatCapacity"が必要です。それ以外の物性値項目への記入は任意です。

(網掛け項目は入力必須です。)

表 6-4. 壁体材料データベースに登録されている材料リスト

	和・衛生工学便覧 材料種類	材料名		和·衛生工学会HASPEE 材料種類	材料名
1	その他	空気(静止)	401	金属	鋼
2	その他	水(静止)	402	金属	アルミニウム
3	その他	氷	403	金属	銅
4	その他	雪	404	金属	ステンレス鋼
5	金属	鋼	421	岩石・土壌	岩石
6	金属	アルミニウム	422	岩石・土壌	土壌
7	金属		441	コンクリート系材料	コンクリート
8	土石	岩石(重量)	442	コンクリート系材料	軽量コンクリート(軽量1種)
9	土石	岩石(軽量)	443	コンクリート系材料	軽量コンクリート(軽量2種)
10	土石	土壌(粘土質)	444	コンクリート系材料	気泡コンクリート(ALC)
11	土石	土壌(砂質)	445	コンクリート系材料	コンクリートプロック(重量)
12	土石	土壌(ローム質)	446	コンクリート系材料	コンクリートブロック(軽量)
13	土石	土壌(火山灰質)		コンクリート系材料	セメント・モルタル
14	土石	砂利	448	コンクリート系材料	押出成型セメント板
15	コンクリート	PCコンクリート 並ごをついたりし、	461	非木質系壁材・下地材	せっこうプラスター
16	コンクリート	普通コンクリート	462	非木質系壁材・下地材	せっこうボード
17	コンクリート	軽量コンクリート	463	非木質系壁材·下地材 非木質系壁材·下地材	硬質せっこうボード
18 19	コンクリート	気泡コンクリート(ALC)		非木質系壁材・下地材	しつくい
20	コンクリート	コンクリートブロック(重量)	466		土壁 ガラス
21	コンクリート	コンクリートブロック(軽量) モルタル	467	非木質系壁材·下地材 非木質系壁材·下地材	タイル
22	コンクリート		468	非木質系壁材・下地材	れんが
		石綿スレート プラスタ	469		かわら
23 24	石こう・セメント・スレート板 石こう・セメント・スレート板	ブラヘラ 石こう板・ラスボード	470	非木質系壁材·下地材 非木質系壁材·下地材	ロックウール化粧吸音板
25	石こう・セメント・スレート板	しっくい	470	非木質系壁材・下地材	火山性ガラス質複合板
26	石こう・セメント・スレート板	土壁	472	非木質系壁材・下地材	ケイ酸カルシウム板 0.8mm
27	ガラス・陶器	ガラス	473	非木質系壁材・下地材	ケイ酸カルシウム板 0.0mm
28	ガラス・陶器	タイル	481	木質系壁材・下地材	天然木材
29	ガラス・陶器	れんが壁	482	木質系壁材・下地材	合板
30	ガラス・陶器	かわら	483	木質系壁材・下地材	タタミボード
31	ガラス・陶器	合成樹脂・リノリウム	484	木質系壁材・下地材	シージングボード
32	高分子	FRP	485	木質系壁材・下地材	A級インシュレーションボード
33	アスファルト系	アスファルト類	486	木質系壁材・下地材	パーティクルボード
34	アスファルト系	防湿紙類	487	木質系壁材・下地材	木毛セメント板
35	床材	畳	488	木質系壁材・下地材	木片セメント板
36	床材	合成畳	489	木質系壁材・下地材	ハードファイバーボード(ハードボード)
37	床材	カーペット類	490	木質系壁材・下地材	ミディアムデンシティファイバーボード (MDF)
38	木材・合板	木材(重量)	501	床材	ビニル系床材
39	木材・合板	木材(中量)	502	床材	FRP
40	木材・合板	木材(軽量)	503	床材	アスファルト類
41	木材·合板	合板	504	床材	畳床
42	木質繊維板	軟質繊維板	505	床材	建材畳床(Ⅲ型50mm厚)
43	木質繊維板	シージングボード	506	床材	建材畳床(K,N型50mm厚)
44	木質繊維板	半硬質繊維板	507	床材	カーペット類
45	木質繊維板	硬質繊維板	521	グラスウール断熱材	グラスウール断熱材 10K相当
46	木質繊維板	パーティクルボード		グラスウール断熱材	グラスウール断熱材 16K相当
47	木質繊維板	木毛セメント板		グラスウール断熱材	グラスウール断熱材 20K相当
48	木質繊維板	セルローズファイバ	524	グラスウール断熱材	グラスウール断熱材 24K相当
49	繊維系断熱材	ガラス綿(24K)		グラスウール断熱材	グラスウール断熱材 32K相当
50	繊維系断熱材	ガラス綿(32K)	526	グラスウール断熱材	高性能グラスウール断熱材 16K相当
51	繊維系断熱材	岩綿保温材	527	グラスウール断熱材	高性能グラスウール断熱材 24K相当
52	繊維系断熱材	吹付け岩綿 	528	グラスウール断熱材	高性能グラスウール断熱材 32K相当
53	繊維系断熱材	岩綿吸音板	529	グラスウール断熱材 グラスウール断熱材	高性能グラスウール断熱材 40K相当
54	発泡プラスチック系断熱材 発泡プラスチック系断熱材	スチレン発泡板(ビーズ)	530		高性能グラスウール断熱材 48K相当
55 56	発泡プラスチック系断熱材	スチレン発泡板(押出し) スチレン発泡板(フロン発泡)	531 532	グラスウール断熱材 グラスウール断熱材	吹込み用グラスウール 13K相当 吹込み用グラスウール 18K相当
57	発泡プラスチック系断熱材	グラレン発泡板(プロン発泡) 硬質ウレタン発泡板	533	グラスウール断熱材	吹込み用グラスウール 30K相当
58	発泡プラスチック系断熱材	吹付け硬質ウレタン(フロン発泡)	534	グラスウール断熱材	吹込み用グラスウール 35K相当
59	発泡プラスチック系断熱材	軟質ウレタン発泡板	541	ロックウール断熱材	吹付けロックウール
60	発泡プラスチック系断熱材	ポリエチレン発泡板	542	ロックウール断熱材	ロックウール断熱材(マット)
61	発泡プラスチック系断熱材	硬質塩化ビニル発泡板	543	ロックウール断熱材	ロックウール断熱材(フェルト)
62	その他	密閉中空層	544	ロックウール断熱材	ロックウール断熱材(ボード)
63	その他	非密閉中空層	545	ロックウール断熱材	吹込み用ロックウール 25K相当
	-		546	ロックウール断熱材	吹込み用ロックウール 65K相当
車築お	料の熱・空気・湿気物性		561	セルローズファイバー断熱材	吹込み用セルローズファイバー 25K
	材料種類	材料名	562	セルローズファイバー断熱材	吹込み用セルローズファイバー 45K
301	石こう	石こうボード	563	セルローズファイバー断熱材	吹込み用セルローズファイバー 55K
302	木質繊維板	木質繊維板	581	ポリスチレンフォーム断熱材	押出法ポリスチレンフォーム 保温板 1種
303	木材·合板	合板	582	ポリスチレンフォーム断熱材	押出法ポリスチレンフォーム 保温板 2種
304	樹脂フィルム	ポリエチレンフィルム	583	ポリスチレンフォーム断熱材	押出法ポリスチレンフォーム 保温板 3種
305	コンクリート	コンクリート	584	ポリスチレンフォーム断熱材	A種ポリエチレンフォーム 保温板 1種2号
306	コンクリート	軽量コンクリート	585	ポリスチレンフォーム断熱材	A種ポリエチレンフォーム 保温板 2種
307	コンクリート	気泡コンクリート	586	ポリスチレンフォーム断熱材	ビーズ法ポリスチレンフォーム 保温板 特号
308	ガラス・陶器	レンガ	587	ポリスチレンフォーム断熱材	ビーズ法ポリスチレンフォーム 保温板 1号
309	コンクリート	セメントモルタル	588	ポリスチレンフォーム断熱材	ビーズ法ポリスチレンフォーム 保温板 2号
310	木材·合板	パイン	589	ポリスチレンフォーム断熱材	ビーズ法ポリスチレンフォーム 保温板 3号
311	木材・合板	スプルース	590	ポリスチレンフォーム断熱材	ビーズ法ポリスチレンフォーム 保温板 4号
312	木材·合板	ウェハーボード	601	ウレタンフォーム断熱材	硬質ウレタンフォーム 保温板 2種1号
313	木質繊維板	パーティクルボード	602	ウレタンフォーム断熱材	硬質ウレタンフォーム 保温板 2種2号
314	コンクリート	ポリスチレンコンクリート	603	ウレタンフォーム断熱材	吹付け硬質ウレタンフォームA種1
315	木質繊維板	木毛セメント板	604	ウレタンフォーム断熱材	吹付け硬質ウレタンフォームA種3
316	木質繊維板	ファイバーセメント	621	フェノールフォーム断熱材	フェノールフォーム 保温板 1種1号
317	繊維系断熱材	グラスウール	622	フェノールフォーム断熱材	フェノールフォーム 保温板 1種2号
318	繊維系断熱材	ロックウール断熱材	701	中空層	密閉中空層
319	発泡プラスチック系断熱材	EPS	702	中空層	非密閉中空層
320	繊維系断熱材	セルロース系断熱材			
321	発泡プラスチック系断熱材	XPS			
322	発泡プラスチック系断熱材	PUF			
323	発泡プラスチック系断熱材	ポリイソシアヌレートフォーム			
020					
324	発泡プラスチック系断熱材	フェノールフォーム			

表 6-4. 壁体材料データベースに登録されている材料リスト(続き)

	524:2000 材料種類	材料名		524:2000(続き) 材料種類	材料名
<u>材料番号</u> 101			174		Silica gel (dessicant)
	Asphalt	Asphalt		Sealant materials; weather stripping and thermal breaks	
102	Bitumen	Pure	175	Sealant materials; weather stripping and thermal breaks	Silicone; pure
103	Bitumen	Felt / sheet	176	Sealant materials; weather stripping and thermal breaks	Silicone; filled
104	Concrete	Medium density (Density1800kg/m3)	177	Sealant materials; weather stripping and thermal breaks	Silicone foam
105	Concrete	Medium density (Density2000kg/m3)	178	Sealant materials; weather stripping and thermal breaks	Urethane/polyurethane (thermal break)
106	Concrete	Medium density (Density2200kg/m3)	179	Sealant materials; weather stripping and thermal breaks	Polyvinylchloride (PVC) flexible; with 40% softener
107	Concrete	High density	180	Sealant materials; weather stripping and thermal breaks	Elastomeric foam; flexible (Density lower)
108	Concrete	Reinforced (with 1 % of steel)	181	Sealant materials; weather stripping and thermal breaks	Elastomeric foam; flexible (Density upper)
109	Concrete	Reinforced (with 2 % of steel)	182	Sealant materials; weather stripping and thermal breaks	Polyurethane (PU) foam
110	Floor coverings	Rubber	183	Sealant materials; weather stripping and thermal breaks	Polyethylene foam
111	Floor coverings	Plastic	184	Gypsum	Gypsum (Density600kg/m3)
112	Floor coverings	Underlay; cellular rubber or plastic	185	Gypsum	Gypsum (Density900kg/m3)
113	Floor coverings	Underlay; felt	186	Gypsum	Gypsum (Density1200kg/m3)
114	Floor coverings	Underlay; wool	187	Gypsum	Gypsum (Density1500kg/m3)
115	Floor coverings	Underlay; cork (density upper limit)	188	Gypsum	Gypsum plasterboard (Density700kg/m3)
116	Floor coverings	Tiles; cork (density lower limit)	189	Gypsum	Gypsum plasterboard (Density900kg/m3)
117	Floor coverings	Carpet / textile flooring	190	Plasters and renders	Gypsum insulating plaster
118	Floor coverings	Linoleum	191	Plasters and renders	Gypsum plastering (Density1000kg/m3)
119	Gases	Air	192	Plasters and renders	Gypsum plastering (Density1300kg/m3)
120	Gases	Carbon dioxide	193	Plasters and renders	Gypsum; sand
121	Gases	Argon	194	Plasters and renders	Lime; sand
122	Gases	Sulphur hexafluoride	195	Plasters and renders	Cement; sand
123	Gases	Krypton	196	Soils	Clay or silt (Density lower)
124	Gases	Xenon	197	Soils	Clay or silt (Density upper)
125	Glass	Soda lime glass (including "float glass")	198	Soils	Sand and gravel (Density lower)
126	Glass	Quartz glass	199	Soils	Sand and gravel (Density upper)
127	Glass	Glass mosaic	200	Stone	Natural; crystalline rock
128	Water	Ice at -10 ° C	201	Stone	Natural; sedimentary rock
129	Water	Ice at 0 ° C	202	Stone	Natural; sedimentary rock; light
130	Water	Snow; freshly fallen (<30mm)	203	Stone	Natural; porous; e.g. lava
131	Water	Snow; soft (30 to 70mm)	204	Stone	Basalt (Density lower)
132	Water	Snow; slightly compacted (70 to 100mm)	205	Stone	Basalt (Density upper)
133	Water	Snow; compacted (< 200mm)	206	Stone	Gneiss (Density lower)
134	Water	Water at 10 ° C	207	Stone	Gneiss (Density tower)
135	Water	Water at 40 ° C	208	Stone	Granite (Density lower)
136	Water	Water at 80 ° C	209	Stone	Granite (Density lower) Granite (Density upper)
137	Metals	Aluminium alloys	210	Stone	Marble
138	Metals	Bronze	211	Stone	Slate (Density lower)
139	Metals	Brass	212	Stone	Slate (Density lower)
140	Metals		213	Stone	Limestone; extra soft
141	Metals	Copper	214		Limestone; soft
142		Iron; cast	215	Stone	
	Metals	Lead	216	Stone	Limestone; semi-hard
143	Metals	Steel Stainless steel; b) austenitic or austenitic-ferritic		Stone	Limestone, hard
144	Metals		217	Stone	Limestone; extra hard
145	Metals	Stainless steel; b) ferritic or martensitic	218	Stone	Sandstone (silica)
146	Metals	Zinc	219	Stone	Natural pumice
147	Plastics; solid	Acrylic	220	Stone	Artificial stone
148	Plastics; solid	Polycarbonates	221	Tiles (roofing)	Clay
149	Plastics; solid	Polytetrafluoroethylene (PTFE)	222	Tiles (roofing)	Concrete
150	Plastics; solid	Polyvinylchloride (PVC)	223	Tiles (other)	Ceramic/porcelain
151	Plastics; solid	Polymethylmethacrylate (PMMA)	224	Tiles (other)	Plastic
152	Plastics; solid	Polyacetate	225	Timber	Timeber (Density450kg/m3)
153	Plastics; solid	Polyamide (nylon)	226	Timber	Timeber (Density500kg/m3)
154	Plastics; solid	Polyamide 6.6 with 25 % glass fibre	227	Timber	Timeber (Density700kg/m3)
155	Plastics; solid	Polyethylene / polythene; high density	228	Wood-based panels	Plywood (Density300kg/m3)
156	Plastics; solid	Polyethylene/polythene; low density	229	Wood-based panels	Plywood (Density500kg/m3)
157	Plastics; solid	Polystyrene	230	Wood-based panels	Plywood (Density700kg/m3)
158	Plastics; solid	Polypropylene	231	Wood-based panels	Plywood (Density1000kg/m3)
159	Plastics; solid	Polypropylene with 25% glass fibre	232	Wood-based panels	Cement-bonded particleboard
160	Plastics; solid	Polyurethane (PU)	233	Wood-based panels	Particleboard (Density300kg/m3)
161	Plastics; solid	Epoxy resin	234	Wood-based panels	Particleboard (Density600kg/m3)
162	Plastics; solid	Phenolic resin	235	Wood-based panels	Particleboard (Density900kg/m3)
163	Plastics; solid	Polyester resin	236	Wood-based panels	Oriented strand board (OSB)
164	Rubber	Natural	237	Wood-based panels	Fibreboard; including MDF (Density250kg/m3)
165	Rubber	Neoprene (polychloroprene)	238	Wood-based panels	Fibreboard; including MDF (Density400kg/m3)
	Rubber	Butyl; (isobutene); solid/hot melt	239	Wood-based panels	Fibreboard; including MDF (Density600kg/m3)
166		Foam rubber (Density lower)	240	Wood-based panels	Fibreboard; including MDF (Density800kg/m3)
166 167	Rubber				, (Donoty ovotky/ IIIO)
167	Rubber Rubber	Foam rubber (Density upper)			
167 168	Rubber	Foam rubber (Density upper) Hard rubber (ebonite): solid	. ——		
167 168 169	Rubber Rubber	Hard rubber (ebonite); solid			
167 168 169 170	Rubber Rubber Rubber	Hard rubber (ebonite); solid Ethylene propylene diene monomer(EPDM)			
167 168 169	Rubber Rubber	Hard rubber (ebonite); solid			

6.3. 窓ガラステータベース32

窓ガラスデータベース"windowDB.xml"には、数百種類の窓ガラス品種の光熱性能値が登録されている。各窓ガラス品種には、ブラインド種類として「なし/明色/中間色/暗色」の 4 つの状態について、それぞれ表 6-5 に示す要素の光熱性能値が登録されている。また、窓ガラス種類を表す情報(WindowType, GlazingName, GlassThickness, GlazingType, OuterGlazingName)や多層構成の窓ガラス品種(複層ガラスなど)の場合に板ガラスと中空層の構成を表す情報(Component)も持たせている。窓種類を表すWindowType 要素は、SNGL:単板ガラス、DL06:複層ガラス中空層 6 ミリ、DL12:複層ガラス中空層 12 ミリ、DLBT:ブラインド内蔵複層ガラス、AFWN:エアフローウィンドウの5種類とする。

なお、データベース内の日射特性および可視光特性の値はいずれも窓ガラス面への入射角が30°におけるものであり、グレージング種別に応じて整理された入射角特性近似式によりプログラム内で任意の入射角における性能値に換算される。

図 6-3 に窓ガラスデータベースの XML 階層構造を、表 6-7 に窓ガラスデータベースに登録されている窓ガラス種類の ID と名称のリストを示す。

なお、表 6-6 に、窓ガラスデータベースの XML ファイル"WindowDB.xml"内の各要素と属性について用語と記入方法の説明を示す。BEST プログラムに標準で付属している窓ガラスデータベース "WindowDB.xml"をテキストエディタや XML エディタなどで直接編集することで、ユーザ独自の窓ガラス性能値を追加登録することも可能である。

表 6-5. 窓ガラスデータベースの光熱性能要素

性能值区		光熱性能要素
分		
熱性能	U	: 熱貫流率(W/m²K)
	k_{LR}	:室内側放射熱伝達係数の割合
	(-)	
	α_R	:室内側放射熱伝達係数(W/m²K)
日射特性	g	:日射熱取得率
	g_R	:日射熱取得率の放射成分
	T_{solar}	:日射透過率
	R _{fsolar}	:日射反射率(室外側入射)
可視光特	T_{vis}	:可視光透過率
性	R_{fvis}	:可視光反射率(室外側入射)
	R_{bvis}	:可視光反射率(室内側入射)

.

³² 郡・石野: 熱負荷計算のための窓性能値に関する研究,日本建築学会環境系論文集 No.600, pp.39·44, 2006.2

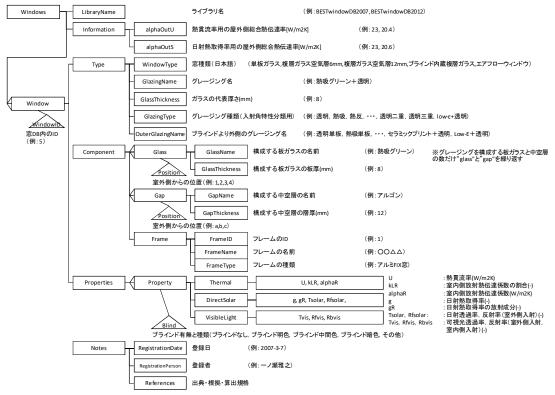


図 6-3 窓ガラスデータベースの XML 階層構造

表 6-6 窓ガラスデータベースのタグ名と説明

L タグ(要素と属性)	用語	説明
Windows		WindowDB.xml の最上階層です。
Window		屋供け、田子は他MECととなるで「藤本/とおコーナナ
WindowID	窓番号	属性に、固有に割り振られた窓番号(整数)を記入します。
Type WindowType	窓種類	下記から該当する窓種類の記号(下線部)を選択して記入します。
,, maow i ype	心压从	SNGL:単板ガラス、
		<u>DL06</u> : 複層ガラス(空気層 6 ミリ),
		DL12: 複層ガラス(空気層 12 ミリ),
		DLBT:ブラインド内蔵複層ガラス,
		AFWN: エアフローウィンドウ
GlazingName	グレージング名	グレージングの名称を記入します。
GlassThickness	ガラスの代表厚さ	単板ガラスまたは複層ガラスを構成する板ガラスの代表厚さ[mm]を記入 ます。
ClazingTypo	グレージング種類	**。 下記から該当するグレージング種類(下線部)を選択して記入します。入身
GlazingType	フレーンング性類	一角特性の計算方法の分類に用いられます。
		透明:透明単板ガラス
		熱吸:熱線吸収板ガラス(単板)
		熱反:熱線反射ガラス(単板)
		高性能熱反 T:高性能熱線反射ガラス T シリーズ(単板)
		高性能熱反 S:高性能熱線反射ガラス T シリーズ(単板)
		<u>セラミックプリント</u> :セラミック印刷ガラス(単板)
		透明二重:透明+透明の組合せ(二重)
		透明三重:透明+透明+透明の組合せ(三重)
		low- ε +透明: 室外側 Low-E ガラス+室内側透明ガラス 透明 Low- ε + 空外側 Mow E ガラス - 室内側 Low E ガラス
		<u>透明+low-ε</u> :室外側透明ガラス+室内側 Low-E ガラス 以下は,室内側透明ガラスの組合せ。
		熱吸+透明:室外側熱線吸収板ガラス+室内側透明ガラス
		熱反+透明:室外側熱線反射ガラス+室内側透明ガラス
		高性能熱反 T+透明: 室外側高性能熱線反射ガラス T シリーズ+室内側
		透明ガラス
		高性能熱反 S+透明:室外側高性能熱線反射ガラス S シリーズ + 室内側透
		明ガラス
	S= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	セラミックプリント+透明:室外側セラミック印刷ガラス+室内側透明ガラス
OuterGlazingName	ブラインドより外側の	ブラインドより室外側にあるグレージングのグレージング名"GlazingName
_	グレージング名	を記入します。
Component	構成	省略可能です。
Properties		
Property Blind	ブラインド有無と種	ブラインド有無と種類を以下から選択して記入します。
DIIIIQ	カノイント有悪と性 類	ブラインドなし:
	^{大大}	ブラインド明色:
		ブラインド中間色:
		ブラインド暗色
Thermal		
U	熱貫流率	ブラインドも含めた窓ガラス中央部の熱貫流率の値[W/m²K]を記入しる
kLR	室内側放射熱伝達	室内側熱伝達係数のうちの放射成分の割合[-]を記入します。
	係数の割合	ウェル M の 利 在 L A A の お P は F な M の は P な 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
alphaR	室内側放射熱伝達	室内側の放射成分の熱伝達係数の値[W/m²K]を記入します。(任意)
	Fr. 441.	
D: 10.1		
		プニハ / \
g	日射熱取得率	
	日射熱取得率 日射熱取得率の放	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値
g	日射熱取得率	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の([-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と-
g	日射熱取得率 日射熱取得率の放	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の([-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再が
g gR	日射熱取得率 日射熱取得率の放 射成分	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と-
g gR Tsolar	日射熱取得率 日射熱取得率の放 射成分 日射透過率	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の作 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再加 出分(長波)を含めます。(任意) ブラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。
g gR	日射熱取得率 日射熱取得率の放 射成分 日射透過率 日射反射率(室外側	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の作 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再加 出分(長波)を含めます。(任意) ブラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。
g gR Tsolar Rfsolar	日射熱取得率 日射熱取得率の放 射成分 日射透過率	[-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再放 出分(長波)を含めます。(任意) ブラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射
g gR Tsolar Rfsolar VisibleLight	日射熱取得率 日射熱取得率の放 射成分 日射透過率 日射反射率(室外側 入射)	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再加 出分(長波)を含めます。(任意) ブラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射 率の値[-]を記入します。(任意)
Tsolar Rfsolar VisibleLight Tvis	日射熱取得率 日射熱取得率の放射成分 日射透過率 日射反射率(室外側 入射)	プラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやプラインドに吸収された日射熱のうちの放射による室内側への再が 出分(長波)を含めます。(任意) プラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射 率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。
g gR Tsolar Rfsolar VisibleLight	日射熱取得率 日射熱取得率の放射成分 日射透過率 日射反射率(室外側 入射) 可視光透過率 可視光反射率(室外	ブラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の作 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再加 出分(長波)を含めます。(任意) ブラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射 率の値[-]を記入します。(任意) ブラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。
g gR Tsolar Rfsolar VisibleLight	日射熱取得率 日射熱取得率の放射成分 日射透過率 日射反射率(室外側入射) 可視光透過率 可視光反射率(室外側入射)	プラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやプラインドに吸収された日射熱のうちの放射による室内側への再が 出分(長波)を含めます。(任意) プラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射 率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の室外側からの入射に対する可視光度 射率の値[-]を記入します。(任意)
Tsolar Rfsolar VisibleLight Tvis Rfvis	日射熱取得率 日射熱取得率の放射成分 日射透過率 日射反射率(室外側 入射) 可視光透過率 可視光反射率(室外	プラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値 [-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやプラインドに吸収された日射熱のうちの放射による室内側への再が 出分(長波)を含めます。(任意) プラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射 率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の室外側からの入射に対する可視光度 射率の値[-]を記入します。(任意)
g gR Tsolar Rfsolar VisibleLight Tvis Rfvis	日射熱取得率 日射熱取得率の放射成分 日射透過率 日射反射率(室外側入射) 可視光透過率 可視光反射率(室外側入射) 可視光反射率(室外側入射) 可視光反射率(室内	プラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値[-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再が出分(長波)を含めます。(任意) プラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の室外側からの入射に対する可視光度射率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の室外側からの入射に対する可視光度
g gR Tsolar Rfsolar VisibleLight Tvis Rfvis	日射熱取得率 日射熱取得率の放射成分 日射透過率 日射反射率(室外側入射) 可視光透過率 可視光反射率(室外側入射) 可視光反射率(室外側入射) 可視光反射率(室内	プラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値[-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやブラインドに吸収された日射熱のうちの放射による室内側への再が出分(長波)を含めます。(任意) プラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 プラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の室外側からの入射に対する可視光度射率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の室外側からの入射に対する可視光度
Tsolar Rfsolar VisibleLight Tvis Rfvis Rbvis	日射熱取得率 日射熱取得率の放射成分 日射透過率 日射反射率(室外側入射) 可視光透過率 可視光反射率(室外側入射) 可視光反射率(室内側入射)	プラインドも含めた窓ガラス中央部の日射熱取得率のうちの放射成分の値[-]を記入します。放射成分には、日射の直接透過分(短波、日射透過率)と- 旦ガラスやプラインドに吸収された日射熱のうちの放射による室内側への再が出分(長波)を含めます。(任意) プラインドを含めた窓ガラス中央部の日射透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の室外側からの入射日射に対する反射率の値[-]を記入します。(任意) プラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の可視光透過率の値[-]を記入します。 ブラインドを含めた窓ガラス中央部の室外側からの入射に対する可視光反射率の値[-]を記入します。(任意) ブラインドを含めた窓ガラス中央部の室内側からの入射に対する可視光反射率の値[-]を記入します。(任意)

(網掛け項目は入力必須です。)

表 6-7 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2007)(SNGL)

Window/D 1	WindowType 単板ガラス	WindowTypeE SNGL	GlazingName 透明フロートガラス	GlassThickness 3
2	単板ガラス	SNGL	透明フロートガラス	5
3	単板ガラス	SNGL SNGL	透明フロートガラス	6 8
5	単板ガラス 単板ガラス	SNGL	透明フロートガラス 透明フロートガラス	10
6 7	単板ガラス	SNGL SNGL	透明フロートガラス	12 15
8	単板ガラス 単板ガラス	SNGL	透明フロートガラス 透明フロートガラス	19
9	単板ガラス	SNGL	透明網入りガラス	7
10 11	単板ガラス単板ガラス	SNGL SNGL	透明網入りガラス 熱吸ブロンズ(淡色)	10 6
12	単板ガラス	SNGL	熱吸プロンズ(淡色)	8
13 14	単板ガラス 単板ガラス	SNGL SNGI	熱吸ブロンズ(淡色) 熱吸ブロンズ(淡色)	10 12
15	単板ガラス	SNGL	熱吸ブロンズ(淡色)	15
16 17	単板ガラス単板ガラス	SNGL SNGL	熱吸ブロンズ(渡色) 熱吸ブロンズ(渡色)	6 8
18	単板ガラス	SNGL	熱吸プロンズ(濃色)	10
19 20	単板ガラス 単板ガラス	SNGL SNGL	熱吸プロンズ(濃色) 熱吸プロンズ(濃色)	12 15
21	単板ガラス	SNGL	熱吸グレー(淡色)	6
22 23	単板ガラス 単板ガラス	SNGL SNGL	熱吸グレー(淡色)	8 10
24	単板ガラス	SNGL	熱吸グレー(淡色) 熱吸グレー(淡色)	12
25	単板ガラス	SNGL	熱吸グレー(淡色)	15
26 27	単板ガラス 単板ガラス	SNGL SNGL	熱吸グレー(濃色) 熱吸グレー(濃色)	6 8
28	単板ガラス	SNGL	熱吸グレー(滞色)	10
29 30	単板ガラス 単板ガラス	SNGL SNGL	熱吸グレー(濃色) 熱吸グレー(濃色)	12 15
31	単板ガラス	SNGL	熱吸グリーン	6
32 33	単板ガラス 単板ガラス	SNGL SNGL	熱吸グリーン 熱吸グリーン	8 10
34	単板ガラス	SNGL	熱吸グリーン	12
35 36	単板ガラス 単板ガラス	SNGL SNGL	熱吸ブルー 熱吸ブルー	6 8
37	単板ガラス	SNGL	熱吸ブルー	10
38 39	単板ガラス 単板ガラス	SNGL SNGL	熱吸ブルー 熱反グリア	12 6
40	単板ガラス	SNGL	熱反クリア	8
41 42	単板ガラス	SNGL SNGL	熱反グリア	10
42	単板ガラス単板ガラス	SNGL	熱反グリア 熱反プロンズ(淡色)	12 6
44	単板ガラス	SNGL	熱反プロンズ(淡色)	8
45 46	単板ガラス単板ガラス	SNGL SNGL	熱反ブロンズ(淡色) 熱反ブロンズ(淡色)	10 12
47	単板ガラス	SNGL	熱反プロンズ(濃色)	6
48 49	単板ガラス 単板ガラス	SNGL SNGL	熱反プロンズ(渡色) 熱反プロンズ(渡色)	8 10
50	単板ガラス	SNGL	熱反プロンズ(連色)	12
51 52	単板ガラス単板ガラス	SNGL SNGI	熱反グレー(淡色) 熱反グレー(淡色)	6 8
53	単板ガラス	SNGL	熱反グレー(淡色)	10
54 55	単板ガラス	SNGL SNGL	熱反グレー(淡色) 熱反グレー(濃色)	12 6
56	単板ガラス	SNGL		8
57 58	単板ガラス単板ガラス	SNGL SNGL	熱反グレー(濃色) 熱反グレー(濃色)	10 12
59	単板ガラス	SNGL	熱反グリーン	6
60 61	単板ガラス	SNGL SNGL	熱反グリーン 熱反グリーン	8 10
62	単板ガラス	SNGL	熱反グリーン	12
63 64	単板ガラス	SNGL SNGL	熱反ブルー	6
65	単板ガラス 単板ガラス	SNGL	熱反ブルー 熱反ブルー	8 10
66	単板ガラス	SNGL	熱反ブルー	12
67 68	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反ブルー系(TS40) 高性能熱反ブルー系(TS40)	6 8
69	単板ガラス	SNGL	高性能熱反ブルー系(TS40) 高性能熱反ブルー系(TS40)	10
70 71	単板ガラス単板ガラス	SNGL SNGL	高性能熱反ブルー系(TS40) 高性能熱反ブルー系(TS30)	12 6
72	単板ガラス	SNGL	高性能熱反ブルー系(TS30)	8
73 74	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反ブルー系(TS30) 高性能熱反ブルー系(TS30)	10 12
75	単板ガラス	SNGL	高性能熱反ブルー系(TS30) 高性能熱反ブルー系(TBL35/TCB35)	6
76 77	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反ブルー系(TBL35/TCB35) 高性能熱反ブルー系(TBL35/TCB35)	8 10
78	単板ガラス	SNGL	高性能熱反ブルー系(TBL35/TCB35)	12
79 80	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反シルバーグレー(SGY32) 高性能熱反シルバーグレー(SGY32)	6 8
81	単板ガラス	SNGL	高性能熱反シルバーグレー(SGY32) 高性能熱反シルバーグレー(SGY32) 高性能熱反シルバーグルー(SGY32) 高性能熱反ライトブルー(TSL30)	10
82 83	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反シルバーグレー(SGY32) 高性能熱反うストブル、(TSI 30)	12 6
84	単板ガラス	SNGL	高性能熱 タライトフルー(TSL3(I))	8
85	単板ガラス単板ガラス	SNGL SNGI	高性性熱反ライトブルー(TSL30)	10
86 87	単板ガラス	SNGL	高性能熱反ライトブルー(TSL30) 高性能熱反シルバー系(SS20)	12 6
88 89	単板ガラス	SNGL SNGI	高性能熱反シルバー系(SS20) 高性能熱反シルバー系(SS20)	8 10
90	単板ガラス	SNGL	高性能熱反シルバー系(SS20)	12
91	単板ガラス	SNGL	高性能熱反シルバー系(SS14)	6
92 93	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反シルバー系(SS14) 高性能熱反シルバー系(SS14)	8 10
94	単板ガラス	SNGL	高性能熱反シルバー系(SS14) 高性能熱反シルバー系(SS8)	12
95 96	単板ガラス単板ガラス	SNGL SNGL	高性能熱反シルバー系(SS8) 高性能熱反シルバー系(SS8)	6 8
97	単板ガラス	SNGL	高性能熱反シルバー系(SS8) 高性能熱反シルバー系(SS8)	10
98 99	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反シルバー系(SS8) セラミックプルト(白30%)	12 6
100	単板ガラス	SNGL	セラミックプリント(白30%)	8
101 102	単板ガラス 単板ガラス	SNGL SNGL	セラミックプリント(白30%) セラミックプリント(白30%)	10 12
103	単板ガラス	SNGL	セラミックプリント(白50%)	6
104 105	単板ガラス 単板ガラス	SNGL SNGL	セラミックプリント(白50%) セラミックプリント(白50%)	8 10
106	単板ガラス	SNGL	セラミックプリント(白50%)	12

表 6-8 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2007)(DL06)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	と述べてするでも	O.10v		2007)
WindowlD	WindowType	WindowTypeE	GlazingName	GlassThickness
107	復層ガラス空気層6mm	DL06	透明フロート二重	3
108	複層ガラス空気層6mm	DL06	透明フロート二重	5
109	複層ガラス空気層6mm	DL06	透明フロート二重	6
110	複層ガラス空気層6mm	DL06	透明フロート二重	8
111	複層ガラス空気層6mm	DL06	透明フロート二重	10
112	複層ガラス空気層6mm	DL06	透明フロート二重	12
113	複層ガラス空気層6mm	DL06	透明フロート二重	15
114	複層ガラス空気層6mm	DL06	透明フロート二重	19
115	複層ガラス空気層6mm	DL06	透明フロート三重	3
116	複層ガラス空気層6mm	DL06	透明フロート三重	5
117	複層ガラス空気層6mm	DL06	透明フロート三重	6
118	複層ガラス空気層6mm	DL06	透明フロート三重	8
119	複層ガラス空気層6mm	DL06	透明フロート三重 透明フロート三重	10
120	複層ガラス空気層6mm	DL06		12
121	復層ガラス空気層6mm 復層ガラス空気層6mm	DL06 DL06	透明フロート三重 透明フロート三重	15 19
123	複層ガラス空気層6mm	DL06	透明網入り+透明	7
124	複層ガラス空気層6mm	DL06	透明網入り+透明	10
125	複層ガラス空気層6mm	DL06	熱吸プロンズ(淡色)+透明	6
126	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	熱吸プロンズ(淡色)+透明	8 10
127 128	複層ガラス空気層6mm	DL06 DL06	熱吸プロンズ(淡色)+透明 熱吸プロンズ(淡色)+透明	12
129	復層ガラス空気層6mm	DL06	熱吸ブロンズ(淡色)+透明	15
130	復層ガラス空気層6mm	DL06	熱吸ブロンズ(濃色)+透明	6
131	複層ガラス空気層6mm	DL06	熱吸プロンズ(漫色)+透明	8
132	複層ガラス空気層6mm		熱吸プロンズ(沸色)+透明	10
133	複層ガラス空気層6mm	DL06	熱吸プロンズ(濃色)+透明	12
134	複層ガラス空気層6mm	DL06	熱吸ブロンズ(濃色)+透明	15
135	複層ガラス空気層6mm	DL06	熱吸グレー(淡色)+透明	6
136	複層ガラス空気層6mm	DL06	熱吸グレー(淡色)+透明	8
137	複層ガラス空気層6mm	DL06		10
138	複層ガラス空気層6mm	DL06	熱吸グレー(淡色)+透明 熱吸グレー(淡色)+透明	12
139	複層ガラス空気層6mm	DL06	熱吸グレー(淡色)+透明	15
140	複層ガラス空気層6mm	DL06	熱吸グレー(濃色)+透明	6
141	複層ガラス空気層6mm	DL06	熱吸グレー(濃色)+透明	8
142	複層ガラス空気層6mm	DL06	熱吸グレー(濃色)+透明	10
143	複層ガラス空気層6mm	DL06	熱吸グレー(濃色)+透明	12
144	複層ガラス空気層6mm	DL06	熱吸グレー(濃色)+透明	15
145	複層ガラス空気層6mm	DL06	熱吸グリーン+透明	6
146	複層ガラス空気層6mm	DL06	熱吸グリーン+透明	8
147	複層ガラス空気層6mm	DL06	熱吸グリーン+透明	10
148	複層ガラス空気層6mm	DL06	熱吸グリーン+透明	12
149	複層ガラス空気層6mm	DL06	熱吸ブルー+透明	6
150	複層ガラス空気層6mm	DL06	熱吸ブルー+透明	8
151	復層ガラス空気層6mm	DL06	熱吸ブルー+透明	10
152	復層ガラス空気層6mm	DL06	熱吸ブルー+透明	12
153	複層ガラス空気層6mm	DL06	熱反クリア+透明	6
154	複層ガラス空気層6mm	DL06	熱反クリア+透明	8
155	複層ガラス空気層6mm	DL06	熱反クリア+透明	10
156	複層ガラス空気層6mm	DL06	熱反クリア+透明	12
157	複層ガラス空気層6mm	DL06	熱反プロンズ(淡色)+透明	6
158	複層ガラス空気層6mm	DL06	熱反プロンズ(淡色)+透明	8
159	復層ガラス空気層6mm	DL06	熱反ブロンズ(淡色)+透明	10
160	復層ガラス空気層6mm	DL06	熱反ブロンズ(淡色)+透明	12
161	復層ガラス空気層6mm	DL06	熱反ブロンズ(濃色)+透明	6
162	復層ガラス空気層6mm	DL06	熱反ブロンズ(濃色)+透明	8
163	複層ガラス空気層6mm	DL06	熱反プロンズ(濃色)+透明	10
164	複層ガラス空気層6mm	DL06	熱反プロンズ(濃色)+透明	12
165	複層ガラス空気層6mm	DL06	熱反グレー(淡色)+透明	6
166	複層ガラス空気層6mm	DL06	熱反グレー(淡色)+透明	8
167	複層ガラス空気層6mm	DL06	熱反グレー(淡色)+透明	10
168	複層ガラス空気層6mm	DL06	熱反グレー(淡色)+透明 熱反グレー(濃色)+透明	12
169	複層ガラス空気層6mm	DL06	熱反グレー(濃色)+透明	6
170	複層ガラス空気層6mm	DL06		8
171	複層ガラス空気層6mm	DL06	熱反グレー(濃色)+透明	10
172	複層ガラス空気層6mm		熱反グレー(濃色)+透明	12
173	複層ガラス空気層6mm	DL06	熱反グリーン+透明	6
174	複層ガラス空気層6mm	DL06	熱反グリーン+透明	8
175	複層ガラス空気層6mm	DL06	熱反グリーン+透明	10
176	複層ガラス空気層6mm	DL06	熱反グリーン+透明	12
177	複層ガラス空気層6mm	DL06	熱反ブルー+透明	6
178	複層ガラス空気層6mm	DL06	熱反ブルー+透明 熱反ブルー+透明	8
179	複層ガラス空気層6mm	DL06	熱反ブルー+透明	10
180	複層ガラス空気層6mm	DL06	熱反ブルー+透明	12
181	複層ガラス空気層6mm	DL06	高性能熱反ブルー系(TS40)+透明	6
182	複層ガラス空気層6mm	DL06	高性能熱反ブルー系(TS40)+透明	8
183	復層ガラス空気層6mm	DL06	高性能熱反プルー系(TS40)+透明	10
184	復層ガラス空気層6mm	DL06	高性能熱反プルー系(TS40)+透明	12
185	複層ガラス空気層6mm	DL06	高性能熱反ブルー系(TS30)+透明	6
186	複層ガラス空気層6mm	DL06	高性能熱反ブルー系(TS30)+透明	8
187	複層ガラス空気層6mm	DL06	高性能熱反ブルー系(TS30)+透明	10
188	複層ガラス空気層6mm	DL06	高性能熱反ブルー系(TS30)+透明	12
189	複層ガラス空気層6mm	DL06	高性能熱反ブルー系(TBL35/TCB35)+透明	6
190	複層ガラス空気層6mm	DL06	高性能熱反プルー系(TBL35/TCB35)+透明	8
191	復層ガラス空気層6mm	DL06	高性能熱反ブルー系(TBL35/TCB35)+透明	10
192	復層ガラス空気層6mm	DL06	高性能熱反ブルー系(TBL35/TCB35)+透明	12
193	複層ガラス空気層6mm	DL06	高性能熱反シルバーグレー(SGY32)+透明	6
194	複層ガラス空気層6mm	DL06	高性能熱反シルバーグレー(SGY32)+透明	8
195	複層ガラス空気層6mm	DL06	高性能熱反シルバーグレー(SGY32)+透明	10
196	複層ガラス空気層6mm	DL06	高性能熱反ライトブルー(TSL30)+透明	12
197	複層ガラス空気層6mm	DL06		6
198	複層ガラス空気層6mm	DL06	高性能熱反ライトブルー(TSL30)+透明	8
199	複層ガラス空気層6mm	DL06	高性能熱反ライトブルー(TSL30)+透明	10
200	複層ガラス空気層6mm	DL06	高性能熱反ライトブルー(TSL30)+透明	12
201	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS20)+透明	6
202	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS20)+透明	8
203	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS20)+透明	10
204	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS20)+透明	12
205	復層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS20)+透明 高性能熱反シルバー系(SS14)+透明 高性能熱反シルバー系(SS14)+透明	6 8
206	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS14)+透明	10
207	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS14)+透明	
208	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS14)+透明	12
209	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS8)+透明	6
210	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS8)+透明	8
211	複層ガラス空気層6mm		高性能熱反シルバー系(SS8)+透明	10
212	複層ガラス空気層6mm	DL06	高性能熱反シルバー系(SS8)+透明	12
213	復層ガラス空気層6mm	DL06	セラミックプリント(白30%)+透明	6
214	復層ガラス空気層6mm	DL06	セラミックプリント(白30%)+透明	8
215	複層ガラス空気層6mm	DL06	セラミックプリント(白30%)+透明	10
216	複層ガラス空気層6mm	DL06	セラミックプリント(白30%)+透明	12
217	複層ガラス空気層6mm	DL06	セラミックプリント(白50%)+透明	6
218	複層ガラス空気層6mm	DL06	セラミックプリント(白50%)+透明	8
219	複層ガラス空気層6mm	DL06	セラミックプリント(白50%)+透明	10
220	複層ガラス空気層6mm	DL06	セラミックプリント(白50%)+透明	12
221	複層ガラス空気層6mm	DL06	low-ε クリア(CVD)+透明	6
222	複層ガラス空気層6mm	DL06	low-εクリア(CVD)+透明	8
223	複層ガラス空気層6mm	DL06	low-εクリアブルー(銀1層)+透明	6
224	複層ガラス空気層6mm	DL06	low-εクリアブルー(銀1層)+透明	8
225 226	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	low-εクリアブルー(銀1階)+透明 low-εクリアブルー(銀1階)+透明 low-εクリアブルー(銀1階)+透明	10 12
227 228	複層ガラス空気層6mm	DL06 DL06	low-ε クリア(銀1層)+透明 low-ε クリア(銀1層)+透明	6
229	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	low- ε クリア(銀1層)+透明	10
230	複層ガラス空気層6mm	DL06	low-ε クリア(銀1層)+透明	12
231	複層ガラス空気層6mm	DL06	low-εシルバー(銀1層)+透明	6
232	複層ガラス空気層6mm	DL06	low - εシルバー(銀1層)+透明	8
233	複層ガラス空気層6mm	DL06	low - εシルバー(銀1層)+透明	10
234	複層ガラス空気層6mm	DL06	low-εシルバー(銀1層)+透明	12
235	複層ガラス空気層6mm	DL06	low- ε ブルー(銀1層)+透明	6
236	複層ガラス空気層6mm	DL06	low- ε ブルー(銀1層)+透明	8

表 6-9 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2007)(DL06)

Minut a coulD	WashT.	WindowTool	OliM	Olean Thislenn
VindowD 237	WindowType 複層ガラス空気層6mm	WindowType8 DL06	GlazingName low-εブルー(銀1層)+透明	GlassThicknes 10
238	複層ガラス空気層6mm	DL06	low- εブルー(銀1層)+透明	12
239	複層ガラス空気層6mm	DL06	low- ε ニュートラルグリーン(銀2層)+透明	6
240 241	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	low- ε ニュートラルグリーン(銀2層)+透明 low- ε ニュートラルグリーン(銀2層)+透明	8 10
242	複層ガラス空気層6mm	DL06	low- ε ニュートラルグリーン(銀2層)+透明	12
243	複層ガラス空気層6mm	DL06	low- ε グリーン(銀2層)+透明	6
244 245	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	low- ε ゲリーン(銀2層)+透明 low- ε ゲリーン(銀2層)+透明	8 10
246	複層ガラス空気層6mm	DL06	low-εグリーン(銀2層)+透明	12
247	複層ガラス空気層6mm	DL06	透明+low- εクリア(CVD)	6
248	複層ガラス空気層6mm	DL06	透明+low- ε クリア(CVD) 透明+low- ε クリアブルー(銀1層)	8
249 250	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	透明+low- ε クリアブルー(銀1層) 透明+low- ε クリアブルー(銀1層)	6 8
251	複層ガラス空気層6mm	DL06	透明+low- ε クリアブルー(銀1層) 透明+low- ε クリアブルー(銀1層) 透明+low- ε クリアブルー(銀1層)	10
252	複層ガラス空気層6mm	DL06	透明+low- ε クリアブルー(銀1層)	12
253	複層ガラス空気層6mm	DL06	透明+low- ε クリア(銀1層)	6
254 255	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	透明+low- ε クリア(銀1層) 透明+low- ε クリア(銀1層)	8 10
256	複層ガラス空気層6mm	DL06	透明+low- ε クリア(銀1層) 透明+low- ε シルバー(銀1層)	12
257	複層ガラス空気層6mm	DL06	透明+low- εシルパー(銀1層)	6
258 259	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	透明+low-εシルバー(銀1層) 透明+low-εシルバー(銀1層)	8 10
260	複層ガラス空気層6mm	DL06	透明+low- εシルバー(銀1層) 透明+low- εシルバー(銀1層)	12
261	複層ガラス空気層6mm	DL06	透明+low-εブルー(銀1層)	6
262 263	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	透明+low- εブルー(銀1層) 透明+low- εブルー(銀1層)	8 10
264	複層ガラス空気層6mm	DL06	透明+low- εブルー(銀1層)	12
265	複層ガラス空気層6mm	DL06	透明+low- ε ブルー(銀1層) 透明+low- ε ニュートラルグリーン(銀2層) 透明+low- ε ニュートラルグリーン(銀2層)	6
266	複層ガラス空気層6mm	DL06	透明+low-εニュートラルグリーン(銀2層)	8
267 268	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	透明+low- εニュートラルグリーン(銀2層) 透明+low- εニュートラルグリーン(銀2層)	10 12
269	複層ガラス空気層6mm	DL06	透明+low- ε ニュートラルグリーン(銀2層) 透明+low- ε グリーン(銀2層)	6
270	複層ガラス空気層6mm	DL06	透明+low- ε グリーン(銀2層) 透明+low- ε グリーン(銀2層)	8
271 272	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	透明+low- ϵ グリーン(銀2層) 透明+low- ϵ グリーン(銀2層)	10 12
273	複層ガラス空気層6mm	DL06	low- ε クリア(CVD)+透明(アルゴン)	6
274	複層ガラス空気層6mm	DL06	I 5117(0/D) - 7518(7 + -5 -)	8
275 276	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	low- ε クリアノルー(銀1層)+透明(アルゴン) low- ε クリアブルー(銀1層)+添田(アル・イ・ハ	6 8
277	複層ガラス空気層6mm	DL06	OW- ε クリア (OVD)+公明 (アルコン) OW- ε クリアブルー(銀1層)+透明 (アルゴン) OW- ε クリアブルー(銀1層)+透明 (アルゴン)	10
278	複層ガラス空気層6mm	DL06	IOW- ε クリアノルー(銀 I 層)+透明(アルコン)	12
279 280	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	low- ε クリア(銀1層)+透明(アルゴン) low- ε クリア(銀1層)+透明(アルゴン)	6 8
281	複層ガラス空気層6mm	DL06	low- ε クリア(銀1層)+透明(アルゴン)	10
282	複層ガラス空気層6mm	DL06	low- ε クリア(銀1層)+透明(アルゴン)	12
283 284	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	low- ε シルバー(銀1層)+透明(アルゴン)	6 8
284	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	low- εシルバー(銀1層)+透明(アルゴン) low- εシルバー(銀1層)+透明(アルゴン)	10
286	複層ガラス空気層6mm	DL06	low- εシルバー(銀1層)+添田(アルゴン)	12
287	複層ガラス空気層6mm	DL06	low-εブルー(銀1層)+透明(アルゴン)	6 8
288 289	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06		10
290	複層ガラス空気層6mm	DL06	low-εブルー(銀1層)+透明(アルゴン) low-εブルー(銀1層)+透明(アルゴン) low-εニュートラルがリーン(銀2層)+透明(アルゴン)	12
291	複層ガラス空気層6mm	DL06	low- εニュートラルグリーン(銀2層)+透明(アルゴン)	6
292 293	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	low- ε ニュートラルグリーン(銀2層)+透明(アルゴン) low- ε ニュートラルグリーン(銀2層)+透明(アルゴン)	8 10
294	複層ガラス空気層6mm	DL06	low- ε ニュートラルグリーン(銀2層)+透明(アルゴン)	12
295	複層ガラス空気層6mm	DL06	low- ε グリーン(銀2層)+透明(アルゴン)	6
296 297	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	low- ε グリーン(銀2層)+透明(アルゴン) low- ε グリーン(銀2層)+透明(アルゴン)	8 10
298	複層ガラス空気層6mm	DL06	low- ε グリーン(銀2層)+透明(アルゴン)	12
299	複層ガラス空気層6mm	DL06	透明+low- ε クリア(CVD)(アルゴン)	6
300	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	透明+low- ε クリア(CVD)(アルゴン) 透明+low- ε クリアブルー(銀1層)(アルゴン)	8 6
302	複層ガラス空気層6mm	DL06	透明+low- ε クリアブルー(銀1層)(アルゴン)	8
303	複層ガラス空気層6mm	DL06	透明+low- ε クリアブルー(銀1層)(アルゴン) 透明+low- ε クリアブルー(銀1層)(アルゴン)	10
304	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	透明+low- ε クリアブルー(銀1層)(アルゴン) 透明+low- ε クリア(銀1層)(アルゴン)	12 6
306	複層ガラス空気層6mm	DL06	透明+low- ε クリア(銀1層)(アルゴン)	8
307	複層ガラス空気層6mm	DL06	透明+low- ε クリア(銀1層)(アルゴン)	10
308 309	複層ガラス空気層6mm	DL06	透明+low- ε クリア(銀1層)(アルゴン)	12 6
310	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	透明+low- εシルバー(銀1層)(アルゴン) 透明+low- εシルバー(銀1層)(アルゴン)	8
311	複層ガラス空気層6mm	DL06	透明+low- ε シルパー(銀1層)(アルゴン) 透明+low- ε シルパー(銀1層)(アルゴン)	10
312	複層ガラス空気層6mm	DL06	透明+low-εシルバー(銀1層)(アルゴン)	12
313	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	透明+low-εブルー(銀1層)(アルゴン) 透明+low-εブルー(銀1層)(アルゴン)	6 8
315	複層ガラス空気層6mm	DL06	透明+low- εシルバー(銀1層)(アルゴン) 透明+low- ε ブルー(銀1層)(アルゴン) 透明+low- ε ブルー(銀1層)(アルゴン) 透明+low- ε ブルー(銀1層)(アルゴン) 透明+low- モブルー(銀1層)(アルゴン)	10
316	複層ガラス空気層6mm	DL06	透明+low- εブルー(銀1層)(アルゴン)	12
317	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	透明+low-εニュートフルグリーン(銀2層)(アルコン) 透明+low-εニュートラルグリーン(銀2層)(アルゴン)	6 8
319	複層ガラス空気層6mm	DL06	$\Xi g_1 + \log - \epsilon$ ブルー(銀 $I \overline{B}$) (アルゴン) 透明 $+ \log \epsilon$ エートラル グリーン(銀 $I \overline{B}$) (アルゴン) 透明 $+ \log \epsilon = 2 - k - k$ ブリーン(銀 $I \overline{B}$) (アルゴン) 透明 $+ \log \epsilon = 2 - k - k$ ブリーン(銀 $I \overline{B}$) (アルゴン) 透明 $+ \log \epsilon = 2 - k - k$ ブリーン(銀 $I \overline{B}$) (アルゴン)	10
320	複層ガラス空気層6mm	DL06		12
321	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	透明+low- ε グリーン (銀2層) (アルゴン) 透明+low- ε グリーン (銀2層) (アルゴン)	6 8
323	複層ガラス空気層6mm	DL06	透明+low- ε グリーン(銀2層)(アルゴン)	10
324	複層ガラス空気層6mm	DL06	透明+low- ε グリーン (銀2層) (アルゴン)	12

表 6-10 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2007)(DL12)

W. I. D	W	<u> </u>		GlassThickness
WindowID 325	WindowType 複層ガラス空気層1	WindowTypeE 2mm DL12	GlazingName 透明フロート二重	Glass I hickness
326	複層ガラス空気層1	2mm DL12	透明フロート二重	5
327 328	複層ガラス空気層1 複層ガラス空気層1		透明プロート二重 透明プロート二重	6 8
329	複層ガラス空気層1	2mm DL12	透明フロート二重	10
330 331	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	透明フロート二重 透明フロート二重	12 15
332	複層ガラス空気層1	2mm DL12	透明フロート二重	19
333 334	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	透明フロート三重 透明フロート三重	3 5
335	複層ガラス空気層1	2mm DL12	透明フロート三重	6
336 337	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	透明フロート三重 透明フロート三重	8 10
338	複層ガラス空気層1	2mm DL12	透明フロート三重	12
339 340	複層ガラス空気層1 複層ガラス空気層1		透明フロート三重 透明フロート三重	15 19
341	複層ガラス空気層1	2mm DL12	透明網入り+透明	7
342 343	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	透明網入り+透明 熱吸プロンズ(淡色)+透明	10 6
344	複層ガラス空気層1	2mm DL12	熱吸ブロンズ(淡色)+透明	8
345 346	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	熱吸プロンズ(淡色)+透明 熱吸プロンズ(淡色)+透明	10 12
347	複層ガラス空気層1	2mm DL12	熱吸プロンズ(淡色)+透明	15
348 349	複層ガラス空気層1 複層ガラス空気層1		熱吸プロンズ(濃色)+透明 熱吸プロンズ(濃色)+透明	6 8
350	複層ガラス空気層1	2mm DL12	熱吸ブロンズ(沸色)+透明	10
351 352	複層ガラス空気層1 複層ガラス空気層1		熱吸プロンズ(漫色)+透明 熱吸プロンズ(漫色)+透明	12 15
353	複層ガラス空気層1	2mm DL12	熱吸グレー(淡色)+透明	6
354 355	複層ガラス空気層1 複層ガラス空気層1		熱吸グレー(淡色)+透明 熱吸グレー(淡色)+透明	8 10
356	複層ガラス空気層1	2mm DL12	動場 グレー(※ 色) + 透明	12
357 358	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	熱吸グレー(淡色)+透明 熱吸グレー(濃色)+透明	15 6
359	複層ガラス空気層1	2mm DL12	熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明	8 10
360 361	複層ガラス空気層1 複層ガラス空気層1		熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明	12
362	複層ガラス空気層1		熱吸グレー(濃色)+透明 熱吸グリーン+透明	15
363 364	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	無吸グリーン+返明 熱吸グリーン+透明 熱吸グリーン+透明	6 8
365 366	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	熱吸グリーン+透明 熱吸グリーン+透明	10
366 367	複層ガラス空気層1	2mm DL12	熱吸ブルー+透明	12 6
368 369	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	熱吸ブルー+透明 熱吸ブルー+透明	8 10
370	複層ガラス空気層1	2mm DL12	熱吸ブルー+透明	12
371 372	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	熱反クリア+透明 熱反クリア+透明	6 8
373	複層ガラス空気層1	2mm DL12	熱反クリア+透明	10
374 375	複層ガラス空気層1		熱反グリア+透明 熱反プロンズ(淡色)+透明	12 6
376	複層ガラス空気層1	2mm DL12	熱反プロンズ(淡色)+透明	8
377 378	複層ガラス空気層1 複層ガラス空気層1		熱反プロンズ(淡色)+透明 熱反プロンズ(淡色)+透明	10 12
379	複層ガラス空気層1	2mm DL12	熱反ブロンズ(濃色)+透明	6
380 381	複層ガラス空気層1 複層ガラス空気層1		熱反プロンズ(濃色)+透明 熱反プロンズ(濃色)+透明	8 10
382	複層ガラス空気層1	2mm DL12	熱反プロンズ(濃色)+透明	12
383 384	複層ガラス空気層1 複層ガラス空気層1		熱反グレー(淡色)+透明 熱反グレー(淡色)+透明	6 8
385	複層ガラス空気層1	2mm DL12	熱反グレー(淡色)+透明	10
386 387	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	熱反グレー(淡色)+透明 熱反グレー(濃色)+透明	12 6
388 389	複層ガラス空気層1	2mm DL12	熱反グレー(濃色)+透明	8 10
390	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	熱反グレー(濃色)+透明 熱反グレー(濃色)+透明	12
391 392	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	熱反グリーン+透明	6 8
393	複層ガラス空気層1	2mm DL12	熱反グリーン+透明 熱反グリーン+透明	10
394 395	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	熱反グリーン+透明 熱反ブルー+透明	12 6
396	複層ガラス空気層1	2mm DL12	熱反ブルー+透明	8
397 398	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	熱反ブルー+透明 熱反ブルー+透明	10 12
399	複層ガラス空気層1	2mm DL12	高性能熱反ブルー系(TS40)+透明	6
400 401	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	高性能熱反ブルー系(TS40)+透明 高性能熱反ブルー系(TS40)+透明	8 10
402	複層ガラス空気層1	2mm DL12	高性能熱反ブルー系(TS40)+透明	12
403 404	複層ガラス空気層1 複層ガラス空気層1		高性能熱反ブルー系(TS30)+透明 高性能熱反ブルー系(TS30)+透明	6 8
405	複層ガラス空気層1	2mm DL12	高性能熱反ブルー系(TS30)+透明	10
406 407	複層ガラス空気層1 複層ガラス空気層1		高性能熱反ブルー系(TS30)+透明 高性能熱反ブルー系(TBL35/TCB35)+透明	12 6
408	複層ガラス空気層1	2mm DL12	高性能熱反ブル―系(TBL35/TCB35)+透明	8
409 410	複層ガラス空気層1 複層ガラス空気層1		高性能熱反ブルー系(TBL35/TCB35)+透明 高性能熱反ブルー系(TBL35/TCB35)+透明	10 12
411	複層ガラス空気層1	2mm DL12	高件能熱反シルバーグレー(SGY32)+透明	6
412 413	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	高性能熱反シルバーグレー(SGY32)+透明 高性能熱反シルバーグレー(SGY32)+透明	8 10
414 415	複層ガラス空気層1 複層ガラス空気層1		高性能熱反シルバーグレー(SGY32)+透明	12 6
416	複層ガラス空気層1	2mm DL12	高性能熱反ライトブルー(TSL30)+透明 高性能熱反ライトブルー(TSL30)+透明	8
417 418	複層ガラス空気層1 複層ガラス空気層1		高性能熱反ライトブルー(TSL30)+透明 高性能熱反ライトブルー(TSL30)+透明	10 12
419	複層ガラス空気層1	2mm DL12	高件能熱反シルパー系(SS20)+透明	6
420 421	複層ガラス空気層1 複層ガラス空気層1		高性能熱反シルバー系(SS20)+透明 高性能熱反シルバー系(SS20)+透明	8 10
422	複層ガラス空気層1	2mm DL12	高性能熱反シルパー系(SS20)+透明	12
423 424	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	高性能熱反シルバー系(SS14)+透明 高性能熱反シルバー系(SS14)+透明	6 8
425 426	複層ガラス空気層1 複層ガラス空気層1		高性能熱反シルバー系(SS14)+透明 高性能熱反シルバー系(SS14)+透明	10 12
427	複層ガラス空気層1	2mm DL12	高性能熱反シルバー系(SS14)+透明 高性能熱反シルバー系(SS8)+透明	6
428 429	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	高性能熱反シルバー系(SS8)+透明 高性能熱反シルバー系(SS8)+透明	8 10
430	複層ガラス空気層1	2mm DL12	高性能熱反シルバー系(SS8)+透明	12
431 432	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	セラミックプリント(白30%)+透明 セラミックプリント(白30%)+透明	6 8
433	複層ガラス空気層1	2mm DL12	セラミックプリント(白30%)+透明	10
434 435	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	セラミックプリント(白30%)+透明 セラミックプリント(白50%)+透明	12 6
436	複層ガラス空気層1	2mm DL12	セラミックプリント(白50%)+透明	8
437 438	複層ガラス空気層1 複層ガラス空気層1		セラミックプリント(白50%)+透明 セラミックプリント(白50%)+透明	10 12
439	複層ガラス空気層1	2mm DL12	low- ε クリア(CVD)+透明	6
440 441	複層ガラス空気層1 複層ガラス空気層1		low- ε クリア(CVD)+透明 low- ε クリアブルー(銀1層)+透明	8 6
442 443	複層ガラス空気層1	2mm DL12	I 51 177 1 (401 R), 15 10	8 10
444	複層ガラス空気層1 複層ガラス空気層1	2mm DL12	low- ε クリアブルー(級 1層)+ 透明 low- ε クリアブルー(銀 1層)+ 透明 low- ε クリアブルー(銀 1層)+ 透明	12
445 446	複層ガラス空気層1 複層ガラス空気層1		low- ε クリア(銀1層)+透明 low- ε クリア(銀1層)+透明	6 8
447	複層ガラス空気層1	2mm DL12	low- ε クリア(銀1層)+透明	10
448 449	複層ガラス空気層1 複層ガラス空気層1	2mm DL12 2mm DL12	low- ε クリア(銀1層)+透明 low- ε シルバー(銀1層)+透明	12 6
450	複層ガラス空気層1	2mm DL12	low- εシルバー(銀1層)+透明	8
451 452	複層ガラス空気層1 複層ガラス空気層1		low- εシルバー(銀1層)+透明 low- εシルバー(銀1層)+透明	10 12
453	複層ガラス空気層1	2mm DL12	low- εブルー(銀1層)+透明	6
454	複層ガラス空気層1	2mm DL12	low- ε ブルー(銀1層)+透明	8

表 6-11 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2007)(DL12)

			O.S., (1111)	
WindowD 455	WindowType 複層ガラス空気層12mn	WindowTypeE n DL12	GlazingName low-εブルー(銀1層)+透明	GlassThickness 10
456 457	複層ガラス空気層12mn	n DL12	low- εブルー(銀1層)+透明	12 6
457	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	low- εニュートラルグリーン(銀2層)+透明 low- εニュートラルグリーン(銀2層)+透明	8
459 460	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	low- εニュートラルグリーン(銀2層)+透明	10
461	後層ガラス空気層12mm	DL12	low- ε ニュートラルグリーン(銀2層)+透明 low- ε グリーン(銀2層)+透明	12 6
462 463	複層ガラス空気層12mn	DL12	low- ε ゲリーン(銀2層)+透明 low- ε ゲリーン(銀2層)+透明	8 10
464	複層ガラス空気層12mn 複層ガラス空気層12mn		low- ε グリーン(銀2層)+透明 low- ε グリーン(銀2層)+透明	12
465	複層ガラス空気層12mn	DL12	透明+low- ε クリア(CVD)	6
466 467	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	透明+low- ε クリア (CVD) 透明+low- ε クリアブルー(銀1層)	8
468	複層ガラス空気層12mn	DL12	透明+low- ε クリアブルー(銀1層)	8
469 470	複層ガラス空気層12mn 複層ガラス空気層12mn		透明+low- ε ウリアブルー(銀1層) 透明+low- ε クリアブルー(銀1層)	10 12
471	複層ガラス空気層12mn	DL12	透明+low- ε クリア(銀1層)	6
472 473	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	透明+low- ε クリア(銀1層) 透明+low- ε クリア(銀1層)	8 10
474	複層ガラス空気層12mn	n DL12	透明+low- ε クリア(銀1層)	12
475 476	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	透明+low- εシルバー(銀1層) 透明+low- εシルバー(銀1層)	6 8
477	複層ガラス空気層12mn	DL12	透明+low- εシルパー(銀1層)	10
478 479	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	透明+low- εシルバー(銀1層) 透明+low- εブルー(銀1層)	12 6
480	複層ガラス空気層12mn	DL12	透明+low - ε ブルー(銀1層) 透明+low - ε ブルー(銀1層)	8
481 482	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	透明+low- εブルー(銀1層) 透明+low- εブルー(銀1層)	10 12
483	複層ガラス空気層12mn	DL12	透明+low- ε ブルー(銀1層) 透明+low- ε ニュートラルグリーン(銀2層) 透明+low- ε ニュートラルグリーン(銀2層)	6
484 485	複層ガラス空気層12mn 複層ガラス空気層12mn		透明+low- εニュートラルグリーン(銀2層) 透明+low- εニュートラルグリーン(銀2層)	8 10
486	複層ガラス空気層12mn	DL12	透明+low-εニュートラルグリーン(銀2層)	12
487 488	複層ガラス空気層12mn 複層ガラス空気層12mn		透明+low- ε グリーン (銀2層) 透明+low- ε グリーン (銀2層)	6 8
489	複層ガラス空気層12mm		透明+low- ε グリーン (銀2層) 透明+low- ε グリーン (銀2層)	10
490	複層ガラス空気層12mn	DL12	透明+low- ε グリーン(銀2層)	12
491 492	複層ガラス空気層12mn 複層ガラス空気層12mn		low- ε クリア(CVD)+透明(アルゴン) low- ε クリア(CVD)+透明(アルゴン)	6 8
493	複層ガラス空気層12mn	n DL12	OW- ε クリアプルー(銀) 層) +透明(アルゴン) OW- ε クリアプルー(銀) 層) +透明(アルゴン) OW- ε クリアプルー(銀) 層) +透明(アルゴン)	6
494 495	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	iow- ε クリアノルー(銀 i 層 j + 透明(アルコン) low- ε クリアブルー(銀 i 層) + 透明(アルゴン)	8 10
496	複層ガラス空気層12mn	n DL12	10W- ε クリアノルー(銀 I 層)+透明(アルコン)	12
497 498	複層ガラス空気層12mn 複層ガラス空気層12mn		low- ϵ クリア(銀1層)+透明(アルゴン) low- ϵ クリア(銀1層)+透明(アルゴン)	6 8
499	複層ガラス空気層12mn	DL12	low- ε クリア(銀1層)+透明(アルゴン)	10
500 501	複層ガラス空気層12mn 複層ガラス空気層12mn		low- ε クリア(銀1層)+透明(アルゴン) low- ε シルバー(銀1層)+透明(アルゴン)	12 6
502	複層ガラス空気層12mm		low-εシルバー(銀1層)+透明(アルゴン) low-εシルバー(銀1層)+透明(アルゴン) low-εシルバー(銀1層)+透明(アルゴン)	8
503 504	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	low- εシルバー(銀1層)+透明(アルゴン) low- εシルバー(銀1層)+透明(アルゴン)	10 12
505	複層ガラス空気層12mn	n DL12	low- ε ブルー(銀1層)+透明(アルゴン)	6
506 507	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	low- εブルー(銀1層)+透明(アルゴン) low- εブルー(銀1層)+透明(アルゴン)	8 10
508	複層ガラス空気層12mn	DL12	low- εブルー(銀1層)+透明(アルゴン)	12
509	複層ガラス空気層12mn	DL12	low-εニュートラルグリーン(銀2層)+透明(アルゴン)	6
510 511	複層ガラス空気層12mn 複層ガラス空気層12mn		$low-\epsilon$ ニュートラルグリーン(銀2層)+透明(アルゴン) $low-\epsilon$ ニュートラルグリーン(銀2層)+透明(アルゴン) $low-\epsilon$ ニュートラルグリーン(銀2層)+透明(アルゴン)	8 10
512	複層ガラス空気層12mn	DL12	low- εニュートラルグリーン(銀2層)+透明(アルゴン)	12
513 514	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	low- ε グリーン(銀2層)+透明(アルゴン) low- ε グリーン(銀2層)+透明(アルゴン)	6 8
515	複層ガラス空気層12mn	DL12	low- ε グリーン(銀2層)+透明(アルゴン)	10
516 517	複層ガラス空気層12mn 複層ガラス空気層12mn		low- ε グリーン(銀2層)+透明(アルゴン) 透明+low- ε クリア(CVD)(アルゴン)	12 6
518	複層ガラス空気層12mn	DL12	透明+low- ε クリア(CVD)(アルゴン)	8
519 520	複層ガラス空気層12mn 複層ガラス空気層12mn		透明+low- ϵ クリアブルー(銀1層)(アルゴン) 透明+low- ϵ クリアブルー(銀1層)(アルゴン)	6 8
521	複層ガラス空気層12mn	DL12	透明+low- ε クリアブルー(銀1層)(アルゴン)	10
522 523	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	透明+low- ε クリアブルー(銀1層)(アルゴン) 透明+low- ε クリア(銀1層)(アルゴン)	12 6
524	複層ガラス空気層12mn	DL12	透明+low- ε クリア(銀1層)(アルゴン)	8
525 526	複層ガラス空気層12mn 複層ガラス空気層12mn		透明+low- ε クリア(銀1層)(アルゴン) 透明+low- ε クリア(銀1層)(アルゴン)	10 12
527	複層ガラス空気層12mn	DL12	透明+low- εシルバー(銀1層)(アルゴン)	6
528 529	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	透明+low- εシルパー(銀1層)(アルゴン) 透明+low- εシルパー(銀1層)(アルゴン)	8 10
530	複層ガラス空気層12mn	DL12	透明+low- εシルパー(銀1層)(アルゴン)	12
531 532	複層ガラス空気層12mn 複層ガラス空気層12mn		透明+low- ε ブルー(銀1層)(アルゴン) 透明+low- ε ブルー(銀1層)(アルゴン)	6 8
533	複層ガラス空気層12mn	DL12	透明+low- εブルー(銀1層)(アルゴン)	10
534 535	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	透明+low- ε ブルー(銀1層)(アルゴン) 透明+low- ε ニュートラルグリーン(銀2層)(アルゴン)	12 6
536	複層ガラス空気層12mn	DL12	透明+low- εニュートラルグリーン(銀2層)(アルゴン)	8
537 538	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12	透明+low- ε ニュートラルグリーン(銀2層)(アルゴン) 透明+low- ε ニュートラルグリーン(銀2層)(アルゴン)	10 12
539	複層ガラス空気層12mn	DL12	透明+low- ε グリーン(銀2層)(アルゴン)	6
540	複層ガラス空気層12mn		透明+low- ε グリーン(銀2層)(アルゴン) 透明+low- ε グリーン(銀2層)(アルゴン)	8
541 542	複層ガラス空気層12mn 複層ガラス空気層12mn	DL12 DL12	透明+low- ϵ グリーン(銀2層)(アルコン) 透明+low- ϵ グリーン(銀2層)(アルゴン)	10 12

表 6-12 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2007)(DLBT)

W	W. I. T	W. I. T. F.	OL: N	OL TILL
WindowD 543	WindowType プラインド内蔵複層ガラス	WindowTypeE DLBT	GlazingName 透明フロート二重	GlassThickness 3
544	ブラインド内蔵複層ガラス	DLBT	透明フロート二重	5
545 546	プラインド内蔵複層ガラス プラインド内蔵複層ガラス	DLBT	透明フロート二重 透明フロート二重	6 8
547	ブラインド内蔵複層ガラス	DLBT	透明フロート二重	10
548 549	プラインド内蔵複層ガラス プラインド内蔵複層ガラス	DLBT	透明フロート二重 透明フロート二重	12 15
550	ブラインド内蔵複層ガラス	DLBT	透明フロート二重	19
551 552	プラインド内蔵複層ガラス プラインド内蔵複層ガラス	DLBT DLBT	透明網入り+透明 透明網入り+透明	7 10
553	ブラインド内蔵復暦ガラス	DLBT	近明網入9+近明 熱吸プロンズ(淡色)+透明	6
554	ブラインド内蔵 複層ガラス	DLBT	熱吸プロンズ(淡色)+透明	8
555 556	ブラインド内蔵複層ガラス ブラインド内蔵複層ガラス	DLBT DLBT	熱吸ブロンズ(淡色)+透明 熱吸ブロンズ(淡色)+透明	10 12
557	ブラインド内蔵複層ガラス	DLBT	熱吸ブロンズ(淡色)+透明	15
558	ブラインド内蔵複層ガラス	DLBT	熱吸プロンズ(濃色)+透明	6
559 560	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	熱吸ブロンズ(濃色)+透明 熱吸ブロンズ(濃色)+透明	8 10
561	ブラインド内蔵複層ガラス	DLBT	熱吸プロンズ(濃色)+透明	12
562 563	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	熱吸ブロンズ(濃色)+透明 熱吸グレー(淡色)+透明	15 6
564	ブラインド内蔵複層ガラス	DLBT	熱吸グレー(淡色)+透明	8
565	ブラインド内蔵複層ガラス	DLBT	熱吸グレー(淡色)+透明 熱吸グレー(淡色)+透明	10
566 567	ブラインド内蔵復層ガラス ブラインド内蔵複層ガラス	DLBT	熱吸グレー(淡色)+透明 熱吸グレー(淡色)+透明	12 15
568	ブラインド内蔵複層ガラス	DLBT	熱吸グレー(沸色)+透明	6
569 570	プラインド内蔵複層ガラス プラインド内蔵複層ガラス	DLBT DLBT	熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明	8 10
571	ブラインド内蔵複層ガラス	DLBT	熱吸グレー(濃色)+透明	12
572	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	熱吸グレー(濃色)+透明 熱吸グリーン+透明	15 6
573 574	ブラインド内蔵複層ガラス	DLBT	熱吸グリーン+透明	8
575	ブラインド内蔵複層ガラス	DLBT	熱吸グリーン+透明	10
576 577	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT DLBT	熱吸グリーン+透明 熱吸ブルー+透明	12 6
578	ブラインド内蔵 複層ガラス	DLBT	熱吸ブルー+透明	8
579 580	ブラインド内蔵複層ガラス ブラインド内蔵複層ガラス	DLBT DLBT	熱吸ブルー+透明 熱吸ブルー+透明	10 12
581	ブラインド内蔵複層ガラス	DLBT	熱反クリア+透明	6
582	ブラインド内蔵複層ガラス	DLBT	熱反クリア+透明 熱反クリア+透明	8
583 584	ブラインド内蔵複層ガラス ブラインド内蔵複層ガラス	DLBT DLBT	熱反グリア+透明 熱反グリア+透明	10 12
585	ブラインド内蔵複層ガラス	DLBT	熱反プロンズ(淡色)+透明	6
586 587	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	熱反プロンズ(淡色)+透明 熱反プロンズ(淡色)+透明	8 10
588	ブラインド内蔵 複層ガラス	DLBT	熱反プロンズ(淡色)+透明	12
589	ブラインド内蔵複層ガラス	DLBT	熱反プロンズ(濃色)+透明	6
590 591	プラインド内蔵複層ガラス プラインド内蔵複層ガラス	DLBT	熱反プロンズ(濃色)+透明 熱反プロンズ(濃色)+透明	8 10
592	ブラインド内蔵複層ガラス	DLBT	熱反プロンズ(濃色)+添明	12
593 594	プラインド内蔵複層ガラス プラインド内蔵複層ガラス	DLBT DLBT	熱反グレー(淡色)+透明 熱反グレー(淡色)+透明	6 8
595	ブラインド内蔵複層ガラス	DLBT	熱反グレー(淡色)+透明	10
596 597	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	熱反グレー(淡色)+透明	12 6
598	ブラインド内蔵複層ガラス	DLBT	熱反グレー(濃色)+透明 熱反グレー(濃色)+透明	8
599 600	ブラインド内蔵複層ガラス ブラインド内蔵複層ガラス	DLBT DLBT	熱反グレー(濃色)+透明 熱反グレー(濃色)+透明	10 12
601	ブラインド内蔵複層ガラス	DLBT	熱反グリーン+透明	6
602	ブラインド内蔵複層ガラス	DLBT	熱反グリーン+透明	8
603 604	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	熱反グリーン+透明 熱反グリーン+透明	10 12
605	ブラインド内蔵複層ガラス	DLBT	熱反ブルー+透明	6
606 607	プラインド内蔵復層ガラス プラインド内蔵復層ガラス	DLBT DLBT	熱反ブルー+透明 熱反ブルー+透明	8 10
608	ブラインド内蔵複層ガラス	DLBT	熱反ブルー+透明	12
609 610	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT DLBT	高性能熱反ブルー系(TS40)+透明 高性能熱反ブルー系(TS40)+透明	6 8
611	ブラインド内蔵複層ガラス	DLBT	高性能熱反ブルー系(TS40)+透明 高性能熱反ブルー系(TS40)+透明	10
612	ブラインド内蔵複層ガラス	DLBT DLBT	高性能熱反ブルー系(TS40)+透明	12
613 614	プラインド内蔵復層ガラス プラインド内蔵復層ガラス	DLBT	高性能熱反ブルー系(TS30)+透明 高性能熱反ブルー系(TS30)+透明	6 8
615	ブラインド内蔵複層ガラス	DLBT	高性能熱反ブルー系(TS30)+透明	10
616 617	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	高性能熱反ブルー系(TS30)+透明 高性能熱反ブルー系(TBL35/TCB35)+透明	12 6
618	ブラインド内蔵 複層ガラス	DLBT	高性能熱反ブルー系(TBL35/TCB35)+透明	8
619 620	プラインド内蔵復層ガラス プラインド内蔵復層ガラス	DLBT	高性能熱反ブルー系(TBL35/TCB35)+透明 高性能熱反ブルー系(TBL35/TCB35)+透明	10 12
621	ブラインド内蔵複層ガラス	DLBT	高性能熱反シルバーグレー(SGY32)+透明	6
622 623	ブラインド内蔵複層ガラス	DLBT	高性能熱反シルバーグレー(SGY32)+透明 高性能熱反シルバーグレー(SGY32)+透明	8
624	プラインド内蔵復層ガラス プラインド内蔵復層ガラス	DLBT	高性能熱反シルバーグレー(SGY32)+透明 高性能熱反シルバーグレー(SGY32)+透明 高性能熱反ライトブルー(TSL30)+透明	10 12
625	ブラインド内蔵複層ガラス	DLBT	高性能熱反ライトブルー(TSL30)+透明	6
626 627	プラインド内蔵復層ガラス プラインド内蔵復層ガラス	DLBT DLBT	高性能熱反ライトブルー(TSL30)+透明 高性能熱反ライトブルー(TSL30)+透明	8 10
628	ブラインド内蔵複層ガラス	DLBT	高性能熱反ライトブルー(TSL30)+透明	12
629 630	ブラインド内蔵複層ガラス ブラインド内蔵複層ガラス	DLBT	高性能熱反シルバ-系(SS20)+透明	6 8
631	ブラインド内蔵複層ガラス	DLBT	高性能熱反シルバー系(SS20)+透明 高性能熱反シルバー系(SS20)+透明	10
632 633	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT DLBT	高性能熱反シルバー系(SS20)+透明 高性能熱反シルバー系(SS14)+透明	12 6
634	ブラインド内蔵複層ガラス	DLBT	高性能熱反シルバ-系(SS14)+透明	8
635 636	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT DLBT	高性能熱反シルバー系(SS14)+透明	10 12
636	ブラインド内蔵複層ガラス	DLBT	高性能熱反シルバー系(SS14)+透明 高性能熱反シルバー系(SS8)+透明	12 6
638	ブラインド内蔵複層ガラス	DLBT	高性能熱反シルバー系(SS8)+透明 高性能熱反シルバー系(SS8)+透明	8
639 640	プラインド内蔵復層ガラス プラインド内蔵復層ガラス	DLBT	高性能熱反シルバー系(SS8)+透明 高性能熱反シルバー系(SS8)+透明	10 12
641	プラインド内蔵複層ガラス	DLBT	セラミックプリント(白30%)+透明	6
642 643	ブラインド内蔵復層ガラス ブラインド内蔵復層ガラス	DLBT	セラミックプリント(白30%)+透明 セラミックプリント(白30%)+透明	8 10
644	ブラインド内蔵 複層ガラス	DLBT	セラミックプリント(白30%)+透明	12
645	ブラインド内蔵複層ガラス	DLBT	セラミックプリント(白50%)+透明	6
646 647	プラインド内蔵復層ガラス プラインド内蔵復層ガラス	DLBT DLBT	セラミックプリント(白50%)+透明 セラミックプリント(白50%)+透明	8 10
648	プラインド内蔵複層ガラス	DLBT	セラミックプリント(白50%)+透明	12

表 6-13 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2007)(AFWN)

Washing	WedenToo	Windows	Chairabhann	OlesaThisland
WindowD 649	WindowType エアフローウインドウ	WindowTypeE AFWN	GlazingName 透明フロート二重	GlassThickness 3
650	エアフローウインドウ	AFWN	透明フロート二重	5
651 652	エアフローウインドウ エアフローウインドウ	AFWN AFWN	透明フロート二重 透明フロート二重	6 8
653	エアフローウインドウ	AFWN	透明フロート二重	10
654 655	エアフローウインドウ エアフローウインドウ	AFWN AFWN	透明フロート二重 透明フロート二重	12 15
656	エアフローウインドウ	AFWN	透明フロート二重	19
657 658	エアフローウインドウ エアフローウインドウ	AFWN AFWN	透明網入り+透明 透明網入り+透明	7 10
659	エアフローウインドウ	AFWN	放明網へり**返明 熱吸プロンズ(淡色)+透明	6
660	エアフローウインドウ エアフローウインドウ	AFWN	熱吸プロンズ(淡色)+透明	8
661 662	エアフローウインドウエアフローウインドウ	AFWN AFWN	熱吸ブロンズ(淡色)+透明 熱吸ブロンズ(淡色)+透明	10 12
663	エアフローウインドウ	AFWN	熱吸ブロンズ(淡色)+透明	15
664 665	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱吸ブロンズ(濃色)+透明 熱吸ブロンズ(濃色)+透明	6 8
666	エアフローウインドウ	AFWN	熱吸ブロンズ(濃色)+透明	10
667 668	エアフローウインドウ	AFWN AFWN	熱吸ブロンズ(濃色)+透明 熱吸ブロンズ(濃色)+透明	12 15
669	エアフローウインドウ エアフローウインドウ	AFWN	熱吸グレー(淡色)+透明	6
670	エアフローウインドウ	AFWN	熱吸グレー(淡色)+透明	8
671 672	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱吸グレー(淡色)+透明 熱吸グレー(淡色)+透明	10 12
673	エアフローウインドウ	AFWN	熱吸グレー(淡色)+透明	15
674 675	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明	6 8
676	エアフローウインドウ	AFWN	熱吸グレー(滞色)+透明	10
677 678	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明	12 15
679	エアフローウインドウ	AFWN	熱吸グリーン+透明	6
680	エアフローウインドウ エアフローウインドウ	AFWN	熱吸グリーン+透明	8
681 682	エアフローウインドウ	AFWN AFWN	熱吸グリーン+透明 熱吸グリーン+透明	10 12
683	エアフローウインドウ エアフローウインドウ	AFWN	熱吸ブルー+透明	6
684 685	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱吸ブルー+透明 熱吸ブルー+透明	8 10
686	エアフローウインドウ	AFWN	熱吸ブルー+透明	12
687	エアフローウインドウ	AFWN AFWN	熱反クリア+透明	6
688 689	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱反クリア+透明 熱反クリア+透明	8 10
690	エアフローウインドウ	AFWN	熱反クリア+透明	12
691 692	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱反プロンズ(淡色)+透明 熱反プロンズ(淡色)+透明	6 8
693	エアフローウインドウ	AFWN	熱反プロンズ(淡色)+透明	10
694	エアフローウインドウ エアフローウインドウ	AFWN	熱反プロンズ(淡色)+透明	12
695 696	エアフローウインドウ	AFWN AFWN	熱反ブロンズ(濃色)+透明 熱反ブロンズ(濃色)+透明	6 8
697	エアフローウインドウ	AFWN	熱反プロンズ(濃色)+透明	10
698 699	エアフローウインドウ	AFWN AFWN	熱反プロンズ(濃色)+透明 熱反が(二(※色)+透明	12 6
700	エアフローウインドウ エアフローウインドウ	AFWN	熱反グレー(淡色)+透明 熱反グレー(淡色)+透明	8
701 702	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱反グレー(淡色)+透明 熱反グレー(淡色)+透明	10 12
703	エアフローウインドウ	AFWN	熱反グレー(液色)+透明	6
704	エアフローウインドウ エアフローウインドウ	AFWN	執 (元) (進名) + 添田	8
705 706	エアフローウインドウエアフローウインドウ	AFWN AFWN	熱反グレー(濃色)+透明 熱反グレー(濃色)+透明	10 12
707	エアフローウインドウ	AFWN	熱反グリーン+透明	6
708 709	エアフローウインドウ エアフローウインドウ	AFWN AFWN	熱反グリーン+透明 熱反グリーン+透明	8 10
710	エアフローウインドウ	AFWN	執行が1一ツ+香田	12
711	エアフローウインドウ	AFWN	熱反ブルー+透明 熱反ブルー+透明	6
712 713	エアフローウインドウ エアフローウインドウ	AFWN AFWN	無反ブルー+透明 熱反ブルー+透明	8 10
714	エアフローウインドウ	AFWN	熱反ブルー+透明	12
715 716	エアフローウインドウ	AFWN AFWN	高性能熱反ブルー系(TS40)+透明 高性能熱反ブルー系(TS40)+透明	6 8
717	エアフローウインドウ エアフローウインドウ	AFWN	高性能熱反ブルー系(TS40)+透明 高性能熱反ブルー系(TS40)+透明	10
718	エアフローウインドウ エアフローウインドウ	AFWN AFWN	高性能熱反ブルー系(TS40)+透明	12 6
719 720	エアフローウインドウ	AFWN	高性能熱反ブルー系(TS30)+透明 高性能熱反ブルー系(TS30)+透明	8
721	エアフローウインドウ	AFWN	高性能熱反ブルー系(TS30)+透明	10
722 723	エアフローウインドウ エアフローウインドウ	AFWN AFWN	高性能熱反ブルー系(TS30)+透明 高性能熱反ブルー系(TBL35/TCB35)+透明	12 6
724	エアフローウインドウ	AFWN	高性能熱反ブルー系(TBL35/TCB35)+透明	8
725 726	エアフローウインドウ エアフローウインドウ	AFWN AFWN	高性能熱反ブルー系(TBL35/TCB35)+透明 高性能熱反ブルー系(TBL35/TCB35)+透明	10 12
727	エアフローウインドウ	AFWN	高性能熱反シルバーグレー(SGY32)+透明	6
728 729	エアフローウインドウ エアフローウインドウ	AFWN AFWN	高性能熱反シルバーグレー(SGY32)+透明 高性能熱反シルバーグレー(SGY32)+透明	8 10
730	エアフローウインドウ	AFWN	高性能熱反シルバーグレー(SGY32)+透明 高性能熱反シルバーグレー(SGY32)+透明 高性能熱反ライトブルー(TSL30)+透明	12
731	エアフローウインドウエアフローウインドウ	AFWN	高性能熱反ライトブルー(TSL30)+透明	6
732 733	エアフローウインドウ	AFWN AFWN	高性能熱反ライトブルー(TSL30)+透明 高性能熱反ライトブルー(TSL30)+透明	8 10
734	エアフローウインドウ エアフローウインドウ	AFWN	高性能熱反ライトブルー(TSL30)+透明	12
735 736	エアフローウインドウ	AFWN AFWN	高性能熱反シルバ	6 8
737	エアフローウインドウ エアフローウインドウ	AFWN	高性能熱反シルバー系(SS20)+透明 高性能熱反シルバー系(SS20)+透明	10
738 739	エアフローウインドウ エアフローウインドウ	AFWN AFWN	高性能熱反シルバー系(SS20)+透明 高性能熱反シルバー系(SS14)+透明	12 6
740	エアフローウインドウ	AFWN	高性能熱反シルバー系(SS14)+透明	8
741 742	エアフローウインドウ	AFWN	高性能熱反シルバー系(SS14)+透明	10
742 743	エアフローウインドウ エアフローウインドウ	AFWN AFWN	高性能熱反シルバー系(SS14)+透明 高性能熱反シルバー系(SS8)+透明	12 6
744	エアフローウインドウエアフローウインドウ	AFWN	高性能熱反シルバー系(SS8)+透明 高性能熱反シルバー系(SS8)+透明	8
745 746	エアフローウインドウ	AFWN AFWN	高性能熱反シルバー系(SS8)+透明 高性能熱反シルバー系(SS8)+透明	10 12
747	エアフローウインドウエアフローウインドウ	AFWN	セラミックプリント(白30%)+透明	6
748 749	エアフローウインドウ エアフローウインドウ	AFWN AFWN	セラミックプリント(白30%)+透明 セラミックプリント(白30%)+透明	8 10
750	エアフローウインドウエアフローウインドウ	AFWN	セラミックプリント(白30%)+透明	12
751		AFWN	セラミックプリント(白50%)+透明	6
752 753	エアフローウインドウ エアフローウインドウ	AFWN AFWN	セラミックプリント(白50%)+透明 セラミックプリント(白50%)+透明	8 10
754	エアフローウインドウ	AFWN	セラミックプリント(白50%)+透明	12
				_

表 6-14 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2012)(SNGL)

WindowlD	WindowType	WindowTypeE	GlazingName	GlassThickness
1	単板ガラス	SNGL	透明ガラス	3
2	単板ガラス 単板ガラス	SNGL SNGL	透明ガラス透明ガラス	5 6
4	単板ガラス	SNGL	透明ガラス	8
5 6	単板ガラス 単板ガラス	SNGL SNGL	透明ガラス 透明ガラス	10 12
7	単板ガラス	SNGL	透明ガラス	15
8 11	単板ガラス 単板ガラス	SNGL SNGL	透明ガラス網入りガラス	19 7
12 21	単板ガラス 単板ガラス	SNGL SNGL	網入りガラス 高透過ガラス	10 3
22	単板ガラス	SNGL	高透過ガラス	5
23 24	単板ガラス 単板ガラス	SNGL SNGI	高透過ガラス	6 8
25	単板ガラス	SNGL	高透過ガラス高透過ガラス	10
26 31	単板ガラス 単板ガラス	SNGL SNGL	高透過ガラス熱吸グリーン	12 6
32	単板ガラス	SNGL	熱吸グリーン	8
33 34	単板ガラス 単板ガラス	SNGL SNGL	熱吸グリーン 熱吸グリーン	10 12
35	単板ガラス	SNGL	熱吸プロンズ(濃色)	6
36 37	単板ガラス 単板ガラス	SNGL SNGL	熱吸ブロンズ(濃色) 熱吸ブロンズ(濃色)	8 10
38	単板ガラス	SNGL	熱吸ブロンズ(濃色)	12
39 40	単板ガラス 単板ガラス	SNGL SNGL	熱吸グレー(液色) 熱吸グレー(液色)	6 8
41	単板ガラス	SNGL	熱吸グレー(濃色) 熱吸グレー(濃色)	10
42 51	単板ガラス 単板ガラス	SNGL SNGL	熱吸グレー(濃色) 熱反シルバー	12 6
52	単板ガラス	SNGL	熱反シルバー	8
53 54	単板ガラス 単板ガラス	SNGL SNGL	熱反シルバー 熱反シルバー	10 12
55	単板ガラス	SNGL	熱反グリーン	6
56 57	単板ガラス 単板ガラス	SNGL SNGL	熱反グリーン 熱反グリーン	8 10
58	単板ガラス	SNGL	熱反グリーン	12
59 60	単板ガラス 単板ガラス	SNGL SNGL	熱反プロンズ(濃色) 熱反プロンズ(濃色)	6 8
61	単板ガラス	SNGL	熱反プロンズ(濃色)	10
62 63	単板ガラス 単板ガラス	SNGL SNGL	熱反プロンズ(渡色) 熱反グレー(渡色)	12 6
64 65	単板ガラス 単板ガラス	SNGL SNGL	熱反グレー(濃色) 熱反グレー(濃色)	8 10
66	単板ガラス	SNGL	熱反グレー(沸色)	12
71 72	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反SGY32(シルバーグレー) 高性能熱反SGY32(シルバーグレー)	6 8
73	単板ガラス	SNGL	高性能熱反SGY32(シルバーグレー)	10
74 75	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反SGY32(シルバーグレー) 高性能熱反TS30(ブルー)	12 6
76	単板ガラス	SNGL	高性能熱反TS30(ブルー)	8
77 78	単板ガラス単板ガラス	SNGL SNGI	高性能熱反TS30(ブルー) 高性能熱反TS30(ブルー)	10 12
79	単板ガラス	SNGL	高性能熱反TS40(ブルー)	6
80 81	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TS40(ブルー) 高性能熱反TS40(ブルー)	8 10
82	単板ガラス	SNGL	高性能熱反TS40(ブルー)	12
83 84	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TBL35/TCB35(ブルー) 高性能熱反TBL35/TCB35(ブルー)	6 8
85 86	単板ガラス	SNGL SNGL	高性能熱反TBL35/TCB35(ブルー) 高性能熱反TBL35/TCB35(ブルー)	10 12
87	単板ガラス 単板ガラス	SNGL	高性能熱反SS8(シルバー)	6
88 89	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反SSB(シルバー) 高性能熱反SSB(シルバー)	8 10
90	単板ガラス	SNGL	高性能熱反SS8(シルバー)	12
91 92	単板ガラス単板ガラス	SNGL SNGI	高性能熱反SS14(シルバー) 高性能熱反SS14(シルバー)	6 8
93	単板ガラス	SNGL	高性能熱反SS14(シルバー)	10
94 95	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反SS14(シルバー) 高性能熱反SS20(シルバー)	12 6
96	単板ガラス	SNGL	高性能熱反SS20(シルバー)	8
97 98	単板ガラス単板ガラス	SNGL SNGL	高性能熱反SS20(シルバー) 高性能熱反SS20(シルバー)	10 12
99	単板ガラス	SNGL	高性能熱反TE10(アースプロンズ)	6
100	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TE10(アースプロンズ) 高性能熱反TE10(アースプロンズ)	8 10
102	単板ガラス	SNGL	高性能熱反下E10(アースプロンズ) 高性能熱反TE15(アースプロンズ) 高性能熱反TE15(アースプロンズ)	12
103 104	単板ガラス 単板ガラス	SNGL SNGL	高性能熱及TE15(アースプロンス) 高性能熱反TE15(アースプロンズ)	6 8
105 106	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TE15(アースプロンズ) 高性能熱反TE15(アースプロンズ)	10 12
107	単板ガラス	SNGL	高性能勢反TS20(シルバーブルー)	6
108	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TS20(シルバーブルー) 高性能熱反TS20(シルバーブルー)	8 10
110	単板ガラス	SNGL	高性能熱反TS20(シルバーブルー)	12
111 112	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TSL30(シルバーライトブルー) 高性能熱反TSL30(シルバーライトブルー)	6 8
113	単板ガラス	SNGL	高性能熱反TSL30(シルバーライトブルー)	10
114 115	単板ガラス	SNGL SNGL	高性能熱反TSL30(シルバーライトブルー) 高性能熱反TCR25(グリーン)	12 6
116	単板ガラス	SNGL	高性能熱反TCR25(グリーン)	8
117 118	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TCR25(グリーン) 高性能熱反TCR25(グリーン)	10 12
119 120	単板ガラス単板ガラス	SNGL SNGL	高性能熱反TCS27(ブルー)	6 8
121	単板ガラス	SNGL	高性能熱反TCS27(ブルー) 高性能熱反TCS27(ブルー)	10
122 131	単板ガラス 単板ガラス	SNGL SNGL	高性能熱反TCS27(ブルー) セラミック白印刷30%	12 6
132	単板ガラス	SNGL	セラミック白印刷30%	8
133	単板ガラス単板ガラス	SNGL SNGL	セラミック白印刷30% セラミック白印刷30%	10 12
135	単板ガラス	SNGL	セラミック白印刷50%	6
136 137	単板ガラス 単板ガラス	SNGL SNGL	セラミック白印刷50% セラミック白印刷50%	8 10
138	単板ガラス単板ガラス	SNGL	セラミック白印刷50%	12
139 140	単板ガラス	SNGL SNGL	セラミック白印刷70% セラミック白印刷70%	6 8
141 142	単板ガラス 単板ガラス	SNGL SNGL	セラミック白印刷70% セラミック白印刷70%	10 12
143	単板ガラス	SNGL	セラミック白印刷100%	6
144 145	単板ガラス 単板ガラス	SNGL SNGL	セラミック白印刷100% セラミック白印刷100%	8 10
146	単板ガラス	SNGL	セラミック白印刷100%	12

表 6-15 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2012)(DL06)

WindowlD	WindowType	WindowTypeE	GlazingName	GlassThickness
203	複層ガラス空気層6mm	DL06	透明+透明	6
204	複層ガラス空気層6mm	DL06	透明+透明 透明+透明	8
205	複層ガラス空気層6mm	DL06		10
206	複層ガラス空気層6mm	DL06	透明+透明	12
223	複層ガラス空気層6mm		高透過+高透過	6
224	複層ガラス空気層6mm	DL06	高透過+高透過	8
225	複層ガラス空気層6mm	DL06	高透過+高透過	10
226	複層ガラス空気層6mm	DL06	高透過+高透過	12
231	複層ガラス空気層6mm	DL06	熱吸グリーン+透明	6
232	複層ガラス空気層6mm	DL06	熱吸グリーン+透明	8
233 234	複層ガラス空気層6mm	DL06 DL06	熱吸グリーン+透明	10 12
235	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	熱吸グリーン+透明 熱吸ブロンズ(濃色)+透明	6
236	複層ガラス空気層6mm	DL06	熱吸ブロンズ(濃色)+透明	8
237	複層ガラス空気層6mm		熱吸ブロンズ(濃色)+透明	10
238 239	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	熱吸プロンズ(濃色)+透明	12
240	複層ガラス空気層6mm	DL06	熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明	8
241 242	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	熱吸グレー(渡色)+透明 熱吸グルー(渡色)+透明 熱吸グルー(渡色)+透明 熱吸グルバー+透明	10 12
251	複層ガラス空気層6mm	DL06	熱反シルバー+透明	6
252	複層ガラス空気層6mm	DL06	熱反シルバー+透明	8
253	複層ガラス空気層6mm	DL06	熱反シルバー+透明	10
254	複層ガラス空気層6mm	DL06	熱反シルバー+透明	12
255	複層ガラス空気層6mm	DL06	熱反グリーン+透明	6
256	複層ガラス空気層6mm	DL06	熱反グリーン+透明	8
257	複層ガラス空気層6mm	DL06	熱反グリーン+透明	10
258	複層ガラス空気層6mm	DL06	無反グリーン+透明 熱反グリーン+透明 熱反グリーン+透明	12
259	複層ガラス空気層6mm	DL06	熱反プロンズ(濃色)+透明	6
260	複層ガラス空気層6mm	DL06	熱反プロンズ(濃色)+透明	8
261	複層ガラス空気層6mm	DL06	熱反プロンズ(濃色)+透明	10
262	複層ガラス空気層6mm	DL06	熱反プロンズ(濃色)+透明	12
263	複層ガラス空気層6mm	DL06	熱反グレー(濃色)+透明	6
264	複層ガラス空気層6mm	DL06		8
265	複層ガラス空気層6mm	DL06	熱反グレー(濃色)+透明 熱反グレー(濃色)+透明	10
266	複層ガラス空気層6mm	DL06	熱反グレー(濃色)+透明	12
271	複層ガラス空気層6mm	DL06	高性能熱反SGY32(シルバーグレー)+透明	6
272	複層ガラス空気層6mm	DL06	高性能熱反SGY32(シルバーグレー)+透明	8
273	複層ガラス空気層6mm	DL06	高性能熱反SGY32(シルバーグレー)+透明	10
274	複層ガラス空気層6mm	DL06	高性能熱反SGY32(シルバーグレー)+透明	12
275 276	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	高性能熱反TS30(ブルー)+透明 高性能熱反TS30(ブルー)+透明 高性能熱反TS30(ブルー)+透明	6 8
277	複層ガラス空気層6mm	DL06	高性能熱反TS30(ブルー)+透明	10
278	複層ガラス空気層6mm	DL06	高性能熱反TS30(ブルー)+透明	12
279 280	複層ガラス空気層6mm	DL06 DL06	高性能熱反TS30(ブルー)+透明 高性能熱反TS40(ブルー)+透明 高性能熱反TS40(ブルー)+透明	6 8
281	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	高性能熱反TS40(ブルー)+透明	10
282	複層ガラス空気層6mm	DL06	高性能熱反TS40(ブルー)+透明	12
283	複層ガラス空気層6mm	DL06	高性能熱反TBL35/TCB35(ブルー)+透明	6
284 285	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	喜紙能勢原TRI 35 /T/R35/ブル)↓添明	8 10
286	複層ガラス空気層6mm	DL06	高性能熱反TBL35/TCB35(ブルー)+透明 高性能熱反TBL35/TCB35(ブルー)+透明	12
287	複層ガラス空気層6mm	DL06	高性能熱反SS8(シルバー)+透明	6
288	複層ガラス空気層6mm	DL06	高性能熱反SS8(シルバー)+透明	8
289	複層ガラス空気層6mm	DL06	高性能熱反SS8(シルバー)+透明	10
290	複層ガラス空気層6mm	DL06	高性能熱反SS8(シルバー)+透明	12
291	複層ガラス空気層6mm	DL06	高性能熱反SS14(シルバー)+透明	6
292	複層ガラス空気層6mm	DL06	高性能熱反SS14(シルバー)+透明	8
293	複層ガラス空気層6mm	DL06	高性能熱反SS14(シルバー)+透明	10
294	複層ガラス空気層6mm	DL06	高性能熱反SS14(シルバー)+透明	12
295	複層ガラス空気層6mm	DL06	高性能熱反SS20(シルバー)+透明	6
296	複層ガラス空気層6mm	DL06	高性能熱反SS20(シルバー)+透明 高性能熱反SS20(シルバー)+透明	8
297	複層ガラス空気層6mm	DL06	高性能熱反SS20(シルバー)+透明	10
298	複層ガラス空気層6mm	DL06		12
299	複層ガラス空気層6mm	DL06	高性能熱反TE10(アースプロンズ)+透明	6
300	複層ガラス空気層6mm	DL06	高性能熱反TE10(アースプロンズ)+透明	8
301 302	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	高性能熱反下E10(アースプロンズ)+透明 高性能熱反下E10(アースプロンズ)+透明 高性能熱反TE15(アースプロンズ)+透明	10 12
303	複層ガラス空気層6mm	DL06	高性能熱反TE15(アースプロンズ)+透明	6
304 305	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	高性能熱反TE15(アースプロンズ)+透明 高性能熱反TE15(アースプロンズ)+透明 高性能熱反TE15(アースプロンズ)+透明	8 10
306	複層ガラス空気層6mm	DL06	高性能熱反TE15(アースプロンズ)+透明	12
307	複層ガラス空気層6mm	DL06	高性能熱反TS20(シルバーブルー)+透明	6
308	複層ガラス空気層6mm	DL06	高性能熱反TS20(シルバーブルー)+透明 高性能熱反TS20(シルバーブルー)+透明	8
309	複層ガラス空気層6mm	DL06	高性能熱反TS20(シルバーブルー)+透明	10
310	複層ガラス空気層6mm	DL06	高性能熱反TS20(シルバーブルー)+透明	12
311 312	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	高性能熱反TS20(シルバーブルー)+透明 高性能熱反TSL30(シルバーライトブルー)+透明 高性能熱反TSL30(シルバーライトブルー)+透明	6 8
313	複層ガラス空気層6mm	DL06	高性能熱反TSL30(シルバーライトブルー)+透明	10
314	複層ガラス空気層6mm	DL06	高性能熱反TSL30(シルバーライトブルー)+透明	12
315	複層ガラス空気層6mm	DL06	高性能熱反TCR25(グリーン)+透明	6
316	複層ガラス空気層6mm	DL06	高性能熱反TCR25(グリーン)+透明	8
317	複層ガラス空気層6mm	DL06	高性能熱反TCR25(グリーン)+透明	10
318 319	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06 DL06	喜杜能執原TCP25(//) (`, /)↓添明	12
320	複層ガラス空気層6mm	DL06	高性能熱反TCS27(ブルー)+透明 高性能熱反TCS27(ブルー)+透明	8
321	複層ガラス空気層6mm	DL06	高性能熱反TCS27(ブルー)+透明	10
322	複層ガラス空気層6mm	DL06	高性能熱反TCS27(ブルー)+透明	12
331 332	複層ガラス空気層6mm 複層ガラス空気層6mm	DL06	セラミック白印刷30%+透明 セラミック白印刷30%+透明	6 8
333	複層ガラス空気層6mm	DL06	セラミック白印刷30%+透明	10
334	複層ガラス空気層6mm	DL06	セラミック白印刷30%+透明	12
335	複層ガラス空気層6mm	DL06	セラミック白印刷50%+透明	6
336	複層ガラス空気層6mm	DL06	セラミック白印刷50%+透明	8
337	複層ガラス空気層6mm	DL06	セラミック白印刷50%+透明	10
338	複層ガラス空気層6mm	DL06	セラミック白印刷50%+透明	12
339	複層ガラス空気層6mm	DL06		6
340	複層ガラス空気層6mm	DL06	セラミック白印刷70%+透明 セラミック白印刷70%+透明	8
341	複層ガラス空気層6mm	DL06	セラミック白印刷70%+透明	10
342	複層ガラス空気層6mm	DL06	セラミック白印刷70%+透明	12
343	複層ガラス空気層6mm	DL06	セラミック白印刷100%+透明	6 8
344	複層ガラス空気層6mm	DL06	セラミック白印刷100%+透明	
345	複層ガラス空気層6mm	DL06	セラミック白印刷100%+透明	10
346	複層ガラス空気層6mm	DL06	セラミック白印刷100%+透明	12
351	複層ガラス空気層6mm	DL06	高日射遮蔽型Low-E+透明	6
352	複層ガラス空気層6mm	DL06	高日射遮蔽型Low-E+透明	8
353	複層ガラス空気層6mm	DL06	高日射遮蔽型Low-E+透明	10
354	複層ガラス空気層6mm	DL06	高日射遮蔽型Low-E+透明	12
355	複層ガラス空気層6mm	DL06	日射遮蔽型Low-E+透明	
356	複層ガラス空気層6mm	DL06	日射遮蔽型Low-E+透明	8
357	複層ガラス空気層6mm	DL06	日射遮蔽型Low-E+透明	10
358	複層ガラス空気層6mm	DL06	日射遮蔽型Low-E+透明	12
359	複層ガラス空気層6mm	DL06	日射取得型Low-E+透明	6
360	複層ガラス空気層6mm	DL06	日射取得型Low-E+透明	
361	複層ガラス空気層6mm	DL06	日射取得型Low-E+透明	10
362	複層ガラス空気層6mm	DL06	日射取得型Low-E+透明	12
363	複層ガラス空気層6mm	DL06	高日射取得型Low-E+透明	6
364	複層ガラス空気層6mm	DL06	高日射取得型Low-E+透明	8
365	複層ガラス空気層6mm	DL06	高日射取得型Low-E+透明	10
366	複層ガラス空気層6mm	DL06	高日射取得型Low-E+透明	12
371	複層ガラス空気層6mm	DL06		6
372	複層ガラス空気層6mm	DL06	透明+日射取得型Low-E 透明+日射取得型Low-E	8
373	複層ガラス空気層6mm	DL06	透明+日射取得型Low-E	10
374	複層ガラス空気層6mm	DL06	透明+日射取得型Low-E	12
375	複層ガラス空気層6mm	DL06	透明+高日射取得型Low-E	6
376	複層ガラス空気層6mm	DL06	透明+高日射取得型Low-E	8
377	複層ガラス空気層6mm	DL06	透明+高日射取得型Low-E	10
378	複層ガラス空気層6mm	DL06	透明+高日射取得型Low-E	12

表 6-16 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2012)(DL12)

WindowlD	WindowType	WindowTypeE	GlazingName	GlassThickness
403	複層ガラス空気層12mm	DL12	透明+透明	6
404	複層ガラス空気層12mm	DL12	透明+透明	8
405	複層ガラス空気層12mm	DL12		10
406	複層ガラス空気層12mm	DL12	透明+透明	12
423	複層ガラス空気層12mm	DL12	高透過+高透過	6
424	複層ガラス空気層12mm	DL12	高透過+高透過	8
425	複層ガラス空気層12mm	DL12	高透過+高透過	10
426	複層ガラス空気層12mm	DL12	高透過+高透過	12
431	複層ガラス空気層12mm	DL12	熱吸グリーン+透明	6
432	複層ガラス空気層12mm	DL12		8
433	複層ガラス空気層12mm	DL12	熱吸グリーン+透明 熱吸グリーン+透明	10
434	複層ガラス空気層12mm	DL12	熱吸グリーン+透明	12
435	複層ガラス空気層12mm	DL12	熱吸ブロンズ(濃色)+透明	6
436	複層ガラス空気層12mm	DL12	熱吸プロンズ(濃色)+透明	8
437	複層ガラス空気層12mm	DL12	熱吸プロンズ(濃色)+透明	10
438	複層ガラス空気層12mm	DL12	熱吸プロンズ(濃色)+透明	12
439	複層ガラス空気層12mm	DL12	熱吸グレー(濃色)+透明	6
440	複層ガラス空気層12mm	DL12	熱吸グレー(濃色)+透明	8
441 442	複層ガラス空気層12mm 複層ガラス空気層12mm	DL12 DL12	熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明 熱吸グレー(濃色)+透明	10 12
451	複層ガラス空気層12mm	DL12	無反シルバー+透明	6
452	複層ガラス空気層12mm	DL12	熱反シルバー+透明	8
453	複層ガラス空気層12mm	DL12	熱反シルバー+透明	10
454	複層ガラス空気層12mm	DL12	熱反シルパー+透明	12
455	複層ガラス空気層12mm	DL12	熱反グリーン+透明	6
456	複層ガラス空気層12mm	DL12	熱 反グリーン+ 添田	8
457	複層ガラス空気層12mm	DL12	熱反グリーン+透明	10
458	複層ガラス空気層12mm	DL12	熱反グリーン+透明	12
459	複層ガラス空気層12mm	DL12	熱反ブロンズ(濃色)+透明	6
460	複層ガラス空気層12mm	DL12	熱反ブロンズ(濃色)+透明	8
461	複層ガラス空気層12mm	DL12	熱反プロンズ(濃色)+透明	10
462 463	複層ガラス空気層12mm 複層ガラス空気層12mm	DL12 DL12	熱反プロンズ(濃色)+透明 熱反グレー(濃色)+透明 熱反グレー(濃色)+透明	12 6
464	複層ガラス空気層12mm	DL12	熱反グレー(濃色)+透明	8
465	複層ガラス空気層12mm	DL12	熱反グレー(濃色)+透明	10
466	複層ガラス空気層12mm	DL12	熱反グレー(濃色)+透明	12
471	複層ガラス空気層12mm	DL12	高性能熱反SGY32(シルバーグレー)+透明	6
472	複層ガラス空気層12mm	DL12	高性能熱反SGY32(シルバーグレー)+透明	8
473 474	複層ガラス空気層12mm 複層ガラス空気層12mm	DL12 DL12	高性能熱反SGY32(シルバーグレー)+透明 高性能熱反SGY32(シルバーグレー)+透明 高性能熱反SGY32(シルバーグレー)+透明	10 12
475	複層ガラス空気層12mm	DL12	高性能熱反TS30(ブルー)+透明	6 8
476	複層ガラス空気層12mm	DL12	高性能熱反TS30(ブルー)+透明	
477	複層ガラス空気層12mm	DL12	高性能熱反TS30(ブルー)+透明	10
478	複層ガラス空気層12mm	DL12	高性能熱反TS30(ブルー)+透明	12
479	複層ガラス空気層12mm	DL12	高性能熱反TS40(ブルー)+透明	6
480 481	複層ガラス空気層12mm 複層ガラス空気層12mm	DL12 DL12	高性能熱反TS40(ブルー)+透明 高性能熱反TS40(ブルー)+透明 高性能熱反TS40(ブルー)+透明	8 10
482	複層ガラス空気層12mm	DL12	高性能熱反TS40(ブルー)+透明	12
483	複層ガラス空気層12mm	DL12	高性能熱反TBL35/TCB35(ブルー)+透明	6
484	複層ガラス空気層12mm	DL12	高性能熱反TBL35/TCB35(ブルー)+透明 高性能熱反TBL35/TCB35(ブルー)+透明	8
485	複層ガラス空気層12mm	DL12	高性能熱反TBL35/TCB35(ブルー)+透明	10
486	複層ガラス空気層12mm	DL12		12
487	複層ガラス空気層12mm	DL12	高性能熱反SS8(シルバー)+透明	6
488	複層ガラス空気層12mm	DL12	高性能熱反SS8(シルバー)+透明	8
489	複層ガラス空気層12mm	DL12	高性能熱反SS8(シルバー)+透明	10
490	複層ガラス空気層12mm	DL12		12
491	複層ガラス空気層12mm	DL12	高性能熱反SS8(シルバー)+透明 高性能熱反SS14(シルバー)+透明	6
492	複層ガラス空気層12mm	DL12	高性能熱反SS14(シルバー)+透明	8
493	複層ガラス空気層12mm	DL12	高性能熱反SS14(シルバー)+透明	10
494	複層ガラス空気層12mm	DL12	高性能熱反SS14(シルバー)+透明	12
495	複層ガラス空気層12mm	DL12		6
496	複層ガラス空気層12mm	DL12	高性能熱反SS20(シルバー)+透明 高性能熱反SS20(シルバー)+透明 高性能熱反SS20(シルバー)+透明	8
497	複層ガラス空気層12mm	DL12	支給給無に0000(と.11 パー)↓活明	10
498	複層ガラス空気層12mm	DL12		12
499	複層ガラス空気層12mm	DL12	高性能熱反TE10(アースプロンズ)+透明	6
500	複層ガラス空気層12mm	DL12	高性能熱反TE10(アースプロンズ)+透明	8
501 502	複層ガラス空気層12mm 複層ガラス空気層12mm	DL12 DL12	高性能熱反TE10(アースプロンズ)+透明 高性能熱反TE10(アースプロンズ)+透明 高性能熱反TE10(アースプロンズ)+透明	10 12
503	複層ガラス空気層12mm	DL12	高性能熱反TE15(アースプロンズ)+透明	6
504	複層ガラス空気層12mm	DL12		8
505	複層ガラス空気層12mm	DL12	高性能熱反下E15(アースプロンズ)+透明 高性能熱反下E15(アースプロンズ)+透明 高性能熱反下E15(アースプロンズ)+透明 高性能熱反下E20(シルバーブルー)+透明	10
506	複層ガラス空気層12mm	DL12	高性能熱反TS20(シルバーブルー)+透明	12
507	複層ガラス空気層12mm	DL12	高性能熱反TS20(シルバーブルー)+透明	6
508	複層ガラス空気層12mm	DL12		8
509	複層ガラス空気層12mm	DL12		10
510 511	複層ガラス空気層12mm 複層ガラス空気層12mm	DL12 DL12	高性能熱反TS20(シルバーブルー)+透明 高性能熱反TS20(シルバーブルー)+透明 高性能熱反TS20(シルバーブルー)+透明	12
512	複層ガラス空気層12mm	DL12	高性能熱反TSL30(シルバーライトブルー)+透明 高性能熱反TSL30(シルバーライトブルー)+透明 高性能熱反TSL30(シルバーライトブルー)+透明	8
513	複層ガラス空気層12mm	DL12	高性能熱反TSL30(シルバーライトブルー)+透明	10
514	複層ガラス空気層12mm	DL12		12
515	複層ガラス空気層12mm	DL12	高性能熱反TCR25(グリーン)+透明	6
516	複層ガラス空気層12mm	DL12	高性能熱反TCR25(グリーン)+透明	8
517	複層ガラス空気層12mm	DL12	高性能熱反TCR25(グリーン)+透明	10 12
518	複層ガラス空気層12mm	DL12	高性能熱反TCR25(グリーン)+透明	6
519	複層ガラス空気層12mm	DL12	高性能熱反TCS27(ブルー)+透明	
520	複層ガラス空気層12mm	DL12	高性能熱反TCS27(ブルー)+透明	8
521	複層ガラス空気層12mm	DL12	高性能熱反TCS27(ブルー)+透明	10
522	複層ガラス空気層12mm	DL12	高性能熱反TCS27(ブルー)+透明	12
531	複層ガラス空気層12mm		セラミック白印刷30%+透明	6
532	複層ガラス空気層12mm	DL12	セラミック白印刷30%+透明	8
533	複層ガラス空気層12mm	DL12	セラミック白印刷30%+透明	10
534	複層ガラス空気層12mm	DL12	セラミック白印刷30%+透明	12
535	複層ガラス空気層12mm	DL12	セラミック白印刷50%+透明	6
536	複層ガラス空気層12mm	DL12	セラミック白印刷50%+透明	8
537	複層ガラス空気層12mm	DL12	セラミック白印刷50%+透明	10
538	複層ガラス空気層12mm	DL12	セラミック白印刷50%+透明	12
539	複層ガラス空気層12mm	DL12	セラミック白印刷70%+透明	6
540	複層ガラス空気層12mm	DL12	セラミック白印刷70%+透明	8
541	複層ガラス空気層12mm	DL12	セラミック白印刷70%+透明	10
542	複層ガラス空気層12mm	DL12	セラミック白印刷70%+透明	12
543	複層ガラス空気層12mm	DL12	セラミック白印刷100%+透明	6
544	複層ガラス空気層12mm	DL12	セラミック白印刷100%+透明	8
545	複層ガラス空気層12mm		セラミック白印刷100%+透明	10
546	複層ガラス空気層12mm	DL12	セラミック白印刷100%+透明	12
551	複層ガラス空気層12mm	DL12	高日射遮蔽型Low-E+透明	6
552	複層ガラス空気層12mm	DL12	高日射遮蔽型Low-E+透明	8
553	複層ガラス空気層12mm	DL12	高日射速蔽型Low-E+透明	10
554	複層ガラス空気層12mm	DL12	高日射速蔽型Low-E+透明	12
555	複層ガラス空気層12mm	DL12	日射遮蔽型Low-E+透明	6
556	複層ガラス空気層12mm	DL12	日射遮蔽型Low-E+透明	
557	複層ガラス空気層12mm	DL12	日射遮蔽型Low-E+透明	10
558	複層ガラス空気層12mm	DL12	日射遮蔽型Low-E+透明	12
559	複層ガラス空気層12mm	DL12	日射取得型Low-E+透明	6
560	複層ガラス空気層12mm	DL12	日射取得型Low-E+透明	8
561	複層ガラス空気層12mm	DL12	日射取得型Low-E+透明	10
562	複層ガラス空気層12mm	DL12	日射取得型Low-E+透明	12
563	複層ガラス空気層12mm	DL12	高日射取得型Low-E+透明	
564	複層ガラス空気層12mm	DL12	高日射取得型Low-E+透明	8
565	複層ガラス空気層12mm	DL12	高日射取得型Low-E+透明	10
566	複層ガラス空気層12mm	DL12	高日射取得型Low-E+透明	12
571	複層ガラス空気層12mm	DL12	透明+日射取得型Low-E	6
572	複層ガラス空気層12mm	DL12	透明+日射取得型Low-E	8
573	複層ガラス空気層12mm	DL12	透明+日射取得型Low-E	10
574	複層ガラス空気層12mm	DL12	透明+日射取得型Low-E	12
575	複層ガラス空気層12mm	DL12	透明+高日射取得型Low-E	6 8
576	複層ガラス空気層12mm	DL12	透明+高日射取得型Low-E	10
577	複層ガラス空気層12mm	DL12	透明+高日射取得型Low-E	
578	複層ガラス空気層12mm	DL12	透明+高日射取得型Low-E	12

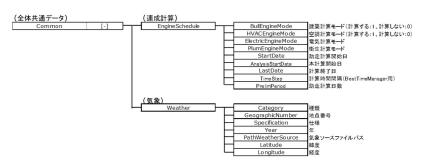
表 6-17 ガラスデータベースに登録されている窓ガラス品種リスト(windowDB 2012)(DLAR06/DLAR12)

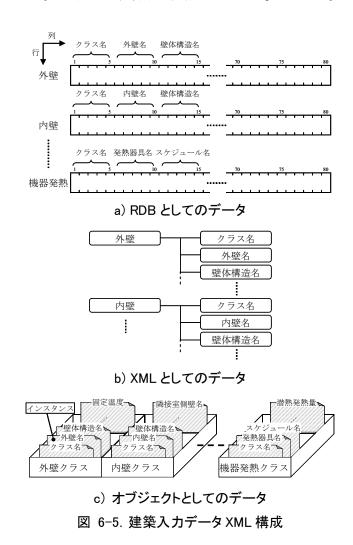
WindowID 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 771	WindowType 複層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm 検層ガラスアルゴン層6mm	WindowTypeE DLAR06 DLAR06 DLAR06 DLAR06	高日射速蔽型Low-E+透明 高日射速蔽型Low-E+透明 高日射速蔽型Low-E+透明	GlassThickness 6 8
753 754 755 756 757 758 759 760 761 762 763 764 765	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm	DLAR06	高日射遮蔽型Low-E+透明	
754 755 756 757 758 759 760 761 762 763 764 765	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm			10
756 757 758 759 760 761 762 763 764 765 766	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm		高日射遮蔽型Low-E+透明	12
757 758 759 760 761 762 763 764 765 766	複層ガラスアルゴン層6mm	DLAR06 DLAR06	日射遮蔽型Low-E+透明 日射遮蔽型Low-E+透明	6 8
759 760 761 762 763 764 765 766	復暦ガラスアルゴン暦6mm	DLAR06	日射遮蔽型Low-E+透明	10 12
761 762 763 764 765 766		DLAR06 DLAR06	日射遮蔽型Low-E+透明 日射取得型Low-E+透明	6
762 763 764 765 766	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm	DLAR06 DLAR06	日射取得型Low-E+透明 日射取得型Low-E+透明	8 10
764 765 766	複層ガラスアルゴン層6mm	DLAR06	日射取得型Low-E+透明	12
766	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm	DLAR06 DLAR06	高日射取得型Low-E+透明 高日射取得型Low-E+透明	6 8
771	複層ガラスアルゴン層6mm	DLAR06	高日射取得型Low-E+透明	10
	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm	DLAR06 DLAR06	高日射取得型Low-E+透明 透明+日射取得型Low-E	12 6
772 773	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm	DLAR06 DLAR06	透明+日射取得型Low-E 透明+日射取得型Low-E	8 10
774	複層ガラスアルゴン層6mm	DLAR06	透明+日射取得型Low-E	12
775 776	複層ガラスアルゴン層6mm 複層ガラスアルゴン層6mm	DLAR06 DLAR06	透明+高日射取得型Low-E 透明+高日射取得型Low-E	6 8
777	複層ガラスアルゴン層6mm	DLAR06	透明+高日射取得型Low-E	10
778 951	複層ガラスアルゴン層6mm 複層ガラスアルゴン層12mm	DLAR06 DLAR12	透明+高日射取得型Low-E 高日射遮蔽型Low-E+透明	12 6
952 953	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	高日射遮蔽型Low-E+透明 高日射遮蔽型Low-E+透明	8 10
954	複層ガラスアルゴン層12mm	DLAR12	高日射遮蔽型Low-E+透明	12
955 956	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	日射遮蔽型Low-E+透明 日射遮蔽型Low-E+透明	6 8
957 958	複層ガラスアルゴン層12mm	DLAR12	日射遮蔽型Low-E+透明	10 12
959	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	日射遮蔽型Low-E+透明 日射取得型Low-E+透明	6
960 961	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	日射取得型Low-E+透明 日射取得型Low-E+透明	8 10
962	複層ガラスアルゴン層12mm	DLAR12	日射取得型Low-E+透明	12
963 964	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	高日射取得型Low-E+透明 高日射取得型Low-E+透明	6 8
965	複層ガラスアルゴン層12mm	DLAR12	高日射取得型Low-E+透明	10
966 971	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	高日射取得型Low-E+透明 透明+日射取得型Low-E	12 6
972 973	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	透明+日射取得型Low-E 透明+日射取得型Low-E	8 10
974	複層ガラスアルゴン層12mm	DLAR12	透明+日射取得型Low-E	12
975 976	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	透明+高日射取得型Low-E 透明+高日射取得型Low-E	6 8
977 978	複層ガラスアルゴン層12mm 複層ガラスアルゴン層12mm	DLAR12 DLAR12	透明+高日射取得型Low-E 透明+高日射取得型Low-E	10 12

6.4. 入力データ XML 構成

図 6-4に BEST における建築入力データを示す。建築入力データは大別すると以下の項目 から成り立っている。下記のようなテキスト、バイナリ形式データでは表現しにくかった 階層構造を持つデータを扱う上でも、XML は適したデータ形式といえる。

- (1) FileInfo: 入力データのファイルパス、データ形式を指定する入力項目である。
- ②Common: 建築・空調・電気・衛生計算の有無、気象データ情報を指定する入力項目である。
- **③Schedule**: スケジュールに関する入力項目である。休日指定、時刻変動スケジュール、週間スケジュール、年間スケジュールを指定する。
- **④Building**: 建物全体に関する入力項目である。建築計算時間間隔、外部日除け、軒高、外表面、 壁体構造を指定する。
- **⑤ZoneBaseConditions**: 事前登録に関する入力項目である。外壁、内壁などの熱負荷要素の内、面積等とは異なり共通して使用する頻度の高い入力項目を取りまとめたものである。
- **⑤Space**: 空間に関する入力項目である。室グループ(MultiSpace)-室(Room)-ゾーン(Zone)の階層から成り、ゾーンには外壁、内壁などの熱負荷要素が子要素に入る。入力データ XML においては階層を深くしないため、Room と Zone は同格に配置している。
- **⑦ZoneControl**: 空調システムとの連成計算を行なわない場合に、室内設定温湿度、装置容量などの空調条件を指定する入力項目である。




図 6-4. 建築入力データ XML 構成 (例:全体共通データ(Common))

6.5. JPA(Java Persistence API)

①従来のマッピング手法の問題点33,34,35

各種データ形式に保存されている入力データを Java プログラム内で扱えるデータ(オブジェクト) として読込む際には、データ間の対応関係を定義する必要がある。この対応付けのことをマッピン グという。オブジェクト指向言語で各種データ形式を扱う際に最も煩わしい作業は、このマッピング 作業である。

図 6-5 に各種データ形式のイメージを示す。オブジェクトと各種データ形式の間には、表現力や自由度に大きなギャップ(インピーダンスミスマッチ)があり、複雑な構造を持つオブジェクト(データ)を、RDB(リレーショナルデータベース)や XML など各種データ固有の形式に対応付けていかなければならないため、どうしても不都合が生じる。また、プログラマーは多数の入力データを一つ一つマッピングする作業を強いられることになる。それ故、マッピングの際のコーディングには大変煩雑な作業が伴い、プログラム開発工程の中でも大きな割合を占める。さらに、単調なコーディングの繰り返しを強いられるため、誤ったマッピングをしてしまうなど、発見しにくいミスを生みやすいという問題があった。この問題を改善する技術のひとつに、JPA がある。

 $^{\,^{33}}$
 <u>http://www.atmarkit.co.jp/fdb/index/index-db.html#javadb,</u> Java の DB アクセスを極める

153

^{34 &}lt;a href="http://www.atmarkit.co.jp/fjava/index/index_ormap01.html">http://www.atmarkit.co.jp/fjava/index/index_ormap01.html, Hibernate で理解する O/R マッピング

³⁵ DB Magazine 2002 November, SE SHOEISHA

②JPA の概要^{36,37}

JPA とは、テキスト、XML 形式などにファイル化されたデータをオブジェクトとして扱うための Java 用 フレームワークである。 主に RDB をオブジェクトとして扱うために利用されているが、BEST では、さ らに広範なデータ形式を統一的に扱うために利用している。このフレームワークを用いることで、現 在は未だデータベースプログラムを用いていないが、データベースプログラムを導入してもプログラ ム側の変更は殆ど発生しないように出来ている。これは JPA が豊富なマッピング機能を有しており、 一般的な設定においては適切なデフォルトが自動的に適用され、容易にマッピングが可能となるた めである。また、XML 形式データとテキスト形式データ、さらに Excel ファイルの混合も認めている。 一例として、RDB をオブジェクトとして扱う場合のデータ間の対応関係を述べる。RDB では「デー タ」を「テーブル」と呼ばれる「表」に相当する形式で扱っている(図 6-5a)。 従来はデータ取得に当 って、RDB のテーブルとオブジェクトの定義をしなければならず、マッピングに伴う煩雑かつ冗長な 作業が発生したが、JPA の適用により自動的にマッピングが行なわれ、「テーブル(表)」を「クラス」、 「レコード(行)」を「インスタンス」としてマッピングされる。つまり、テーブルで表記された固有のデー タ内容をプログラム内で記述する作業が解消される。

図 6-6 に JPA の機能拡張イメージを示す。 JPA は本来、オブジェクトと RDB のマッピングを簡易化 するためのフレームワークである。JPA では「find+クラス名」でデータ取得を行なうため、どのような 手法でマッピングされているかは問わない。それ故、BEST では、CSV、Excel 形式データなど他の データ形式においても同様にマッピングが可能となるよう機能を拡張している。 さらに XML マッピン グ用のフレームワークである IAXB2.0 も利用することにより多様なデータ形式を取り扱えるようにし ている。

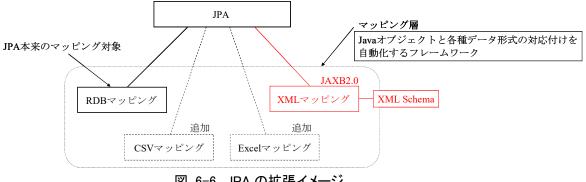


図 6-6. JPA の拡張イメージ

³⁶ Seasar2 と Hibernate で学ぶデータベースアクセス JPA 入門, 毎日コミュニケーションズ, 中村年宏 著

³⁷ Java Expert #01, 技術評論社, p144-182

3適用例38

BEST では入力データを XML 形式で扱っているため、XML とオブジェクトのデータバインディング (マッピング)が必要となる。データバインディングに当たって、JAXB2.0を利用したマッピングのため のフレームワークを構築している。図 6-7 に建築プログラムにおける適用例を示す。データバイン ディングに必要な情報は、XML Schema のみである。XML Schema とは、XML データの構造を記したものであり、マッピングに関する情報がコーディングされたクラスを自動生成できる。フレームワークの内容を以下 1)~3)に示す。

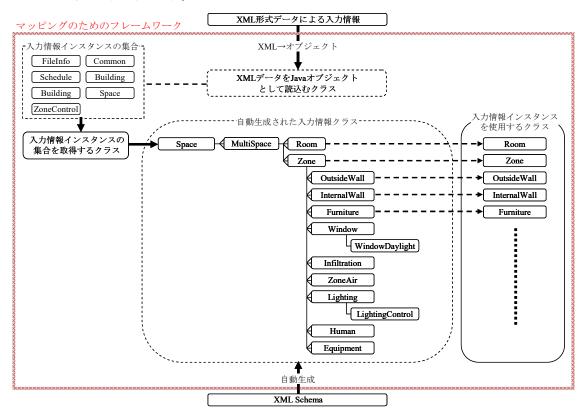


図 6-7. 建築プログラムにおける JPA 適用例

- 1) XML データをオブジェクトとして扱うためのクラスを利用し、XML 形式の入力情報をメモリー上にインスタンスの集合として変換する。ここで、このクラスは、JAXB2.0を利用するため、プログラマーのコーディング作業は軽微になっている。
- 2) 入力情報のインスタンスを取得し、XML Schema で記した構造に沿ってデータを格納する。その際に必要となる XML の構造を示したクラスは、JAXB2.0 を利用することにより、XML Schema から自動生成できる。
- 3) 自動生成したクラスから、プログラム実行に必要な入力情報を取得する。

٠

³⁸ Java Expert #01, 技術評論社, p144-182

自動生成したクラスは各 XML のタグ名と同じ名前を持つクラスとしてデータを有している。そのため、例えば外壁データを取得する場合、クラス名が OutsideWall など、直感的にデータ内容が連想可能な形で取得でき、取得するデータを取り違えるリスクを軽減できる。さらに、今後予想される頻繁なスキーマ変更に対しても、XML Schema のみを変更すれば容易にマッピングが可能となっている。それ故、プログラマーはオブジェクトと XML 形式データのマッピングを、XML を強く意識することなく可能となる。その結果、システム間のデータのやり取りに柔軟に対応でき、データ取得やプログラム改良などが従来のマッピングと比べ自由度が高く、開発生産性の向上に繋がっている。

7. 計算事例

7.1. 計算事例 1(事務所)

図 7-1、図 7-2 に事務所の計算例を示す。空調時間帯は、エクスプリシット法で計算時間間隔 5 分、非空調時はインプリシット法で基本的に60分、一部30分と5分の間隔としている。冷房時の成 行きの除湿や周囲面温度が室温と異なることを考慮して計算した PMV が得られる。

(オフィス基準階の平面図)

(主な計算条件)

- ▼ へふ ・地点:大阪、(気象データは1分値データを元に作成した、5分間隔、60分間隔データを使用)
- ●建物
- ▼建物 ・計算室:基準階南室南、東、西、インテリアの4ゾーン ・窓:高さ2.6m、low-ε 複層ガラス+中間色ブラインド(開閉調整あり)、外部日除けなし
- 内部発熱(ピーク値):照明20W/㎡、人員0.15人/㎡、機器15W/㎡
- ●空調
- ●空調 ・空調方式: インラリアAHU(CAV,風量7回/h,取入外気量はペリメータ供給分も含む),ペリメータFCU ・空調時間:8:00〜22:00 ・設定温湿度:冷房期26℃(湿度は成行き)、暖房期22℃、50% ・熱源運転:冷房期は冷熱のみ、暖房期は、冷温熱供給(ただし、FCUは温水供給のみ)

- ●計算 ・計算時間間隔:7:30~22:00は5分、
- 22:00~7:00は60分、7:00~7:30は30分。

 ・計算法:8:00~22:00はエクスプリシット法、それ以外はインプリシット法

図 7-1. オフィス平面図と主要な計算条件

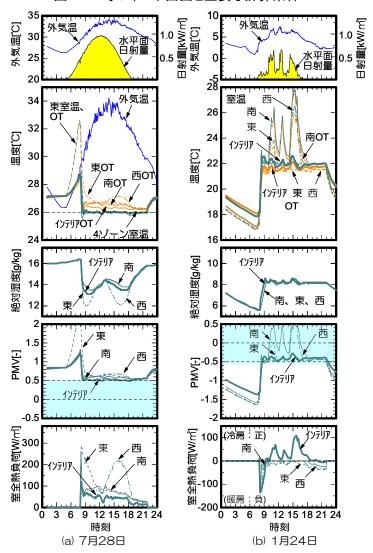


図 7-2. 夏期、冬期代表 1日の時刻変動(大阪、オフィス基準階南室)

7.2. 計算事例 2(住宅)

図 7-3、図 7-4 に RC 造戸建て住宅の計算条件・計算結果を示す。 具体的な空調システムは想定 せず、インプリシット法により熱負荷を計算している。 計算時間間隔は、15 分、60 分を併用した。 シ ステムを想定しないといっても各室装置容量と換気条件は入力し、その影響を考慮できる。

(主な計算条件)

●気象: 東京 2006 年 1 分値データ ●計算法: インプリシット法 (建物単独計算) ●計算時間間隔 23:00~5:00 60 分、5:00~5:30 30 分、5:30~23:00 15 分 ●建物条件 計算室: (1F)台所、居間、和室 (2F) 書斎、寝室、子供室 S、N (1、2F)廊下ほか 構造: RC 造 断熱: 外壁 25mm、屋根 50mm 窓: 透明二重ガラス (日中は内部日除け開)、隙間風: 0.5 回/h、内部発熱: 4 人家族 ●空調運転条件 設定室温: 暖房 20℃、冷房 26℃ 冷暖房能力 (顕熱): 200W/㎡、換気: 居間・台所 4CMH/㎡、2F 居室 2CMH/㎡

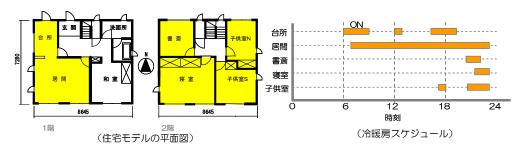


図 7-3. 住宅平面図と主要な計算条件

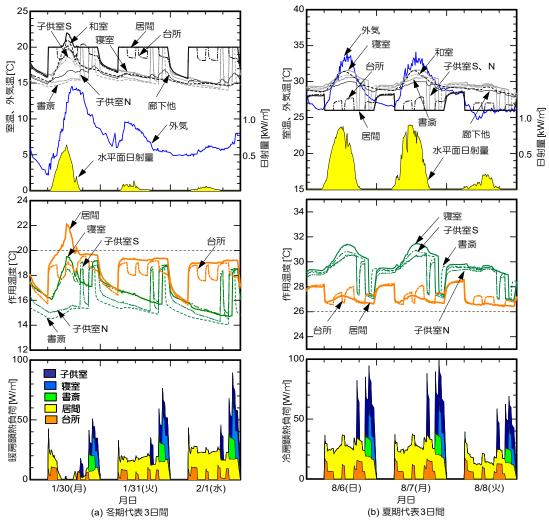
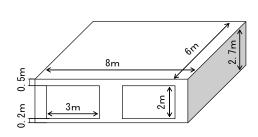



図 7-4. 冬期代表 1 週間の時刻変動(大阪、RC 造戸建住宅)

7.3. 計算事例 3(BESTEST CASE600)

図 7-5、図 7-6 に BESTEST での標準ケースである CASE_600 の計算条件・計算結果を示す。非常に単純な構造の建物について、アメリカのデンバーの EPW 気象データを使用して計算を行った。 CASE_600 を標準とし、外部日除けの有無や建物方位などを変更することでケーススタディを行うことが可能。

気象データ	EPW 5	データ(Denver)							
建物情報	面積:6	m×8m=48 m²、高さ:2.7m、窓面積:12 m²							
ガラス種類	透明フ	透明フロート二重(ガラス厚:3 mm、空気層:12 mm)							
壁体構造	屋根	ID316:ファイハ・ーセメント 0.19W/mK 10 mm ID49:ガラス綿(24K) 0.042W/mK 112 mm ID314:ポリスチレンコンクリート 0.14W/mK 19 mm							
	床	ID44:半硬質繊維板 0.14W/mK 25 mm ID50:ガラス綿(32K) 0.040W/mK 1003 mm							
	外壁	ID316:ファイハ'ーセメント 0.19W/mK 12 mm ID49:ガラス綿(24K) 0.042W/mK 66 mm ID314:ポリスチレンコンクリート 0.14W/mK 9 mm							
侵入外気量	0.41 回	l/h							
内部発熱	機器 0.	2kW 冷却方式:自然放熱							
空調条件	暖房:室温<20℃、冷房:室温>27℃ 暖房容量:1000kW、冷房容量:1000kW (実際上∞) 外気導入なし								
計算間隔	3600se	c							

図 7-5. CASE_600 のアイソメ図と主要な計算条件

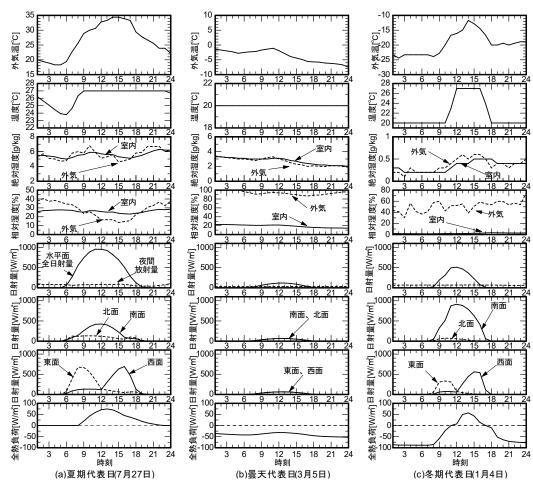


図 7-6. 代表日の時刻変動計算事例

7.4. 計算事例 4(事務所最大負荷)

図 7-7、表 7-1 に計算条件、図 7-8 に計算結果を示す。設計用気象データ(暖房 2 種類、冷房 3 種類の特徴の異なる気象データを有する)により、これらをすべてについて日周期定常計算を行い、その中から最大熱負荷を選ぶことができる。最大熱負荷が発生する気象データは方位によって異なる。

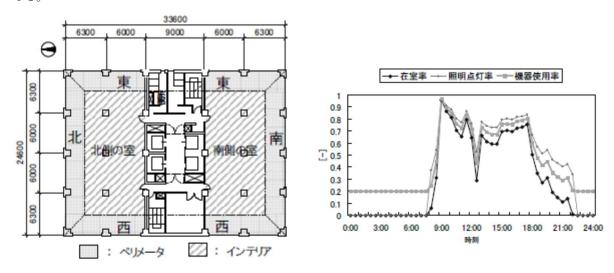


図 7-7. 標準オフィス平面図(左図)と内部発熱スケジュール(右図)

表 7-1 設定条件

気象	拡張アメダス設	計用気象データ(東京)							
	t−x基準	気温と絶対湿度が低い							
暖房	t−Jh基準	気温が低く日射量が少ない							
	h−t基準	エンタルピと気温が高い							
冷房	Jc−t基準	水平面や西、東面の日射量が多く気温が高い							
	Js−t基準	南面日射量が多く、気温が高い(秋に近いデータ)							
	標準オフィス基								
	ペリメータ奥行	き3m							
	窓	窓面積率68%							
建物	心	low-e複層ガラス+中間色ブラインド							
		照明20W/m2、在室者0.15人/m2							
	内部発熱	機器15W/m2							
		季節による割増し・割引き係数使用(夏:1.3、冬:0.3)							
	空調時間	8:30~22:00							
	予冷熱時間	8:30~9:00							
	外気導入	8:45~22:00							
	設計温湿度								
	夏期	26℃、60%(インテリア、ペリメータとも)							
	冬期	22°C、50%(インテリア、ペリメータとも)							
空調	空調装置								
工训	インテリア	ペリメータ供給分の外気も導入。							
		夏期は冷却・除湿							
		冬期は冷却加熱・加湿							
	ペリメータ	外気導入なし。							
		夏期は冷却・除湿							
		冬期は加熱(加湿はなし)							
	外気導入量	6.6CMH/m2(インテリア単位床面積当たり)、30CMH/人							
		0:00~8:00は60分、8:00~8:30は30分、							
		8:30~9:30は5分、9:30~10:00は30分							
その他	計算時間間隔	10:00~12:00は60分、12:00~13:00は30分							
		13:00~22:00は60分、22:00~22:30は5分							
		22:30~23:00は30分、23:00~24:00は60分							

*滝沢博:標準問題の提案(オフィス用標準問題)、日本建築学会環境工学委員会第15回熱シンポジウム

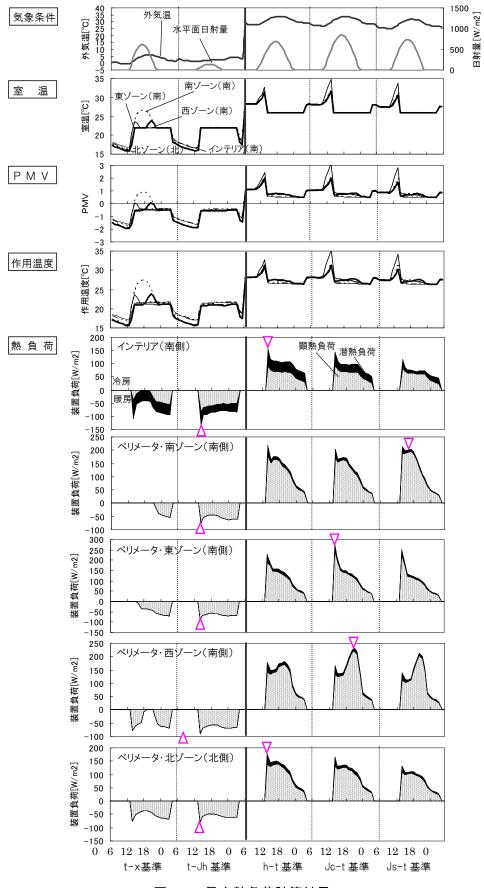
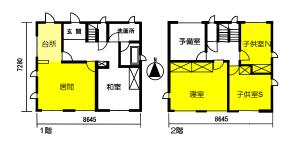



図 7-8. 最大熱負荷計算結果

7.5. 計算事例 5(住宅最大負荷)

図 7-9、図 7-10にRC造戸建て住宅での冷暖房最大負荷計算例を示す。BESTでは、1 日に冷暖房のオンオフを何度も繰り返す間々欠運転の予冷熱計算(予冷熱終了時に設定温湿度に達する)も可能である。装置負荷変動は居間と子供室Nを示した。

(主な計算条件)

- ●気象データ 東京拡張アメダス設計用気象データ
- ●計算法 インプリシット法(建築単独計算)
- ●計算時間間隔

6:00まで:60分、6:00~23:30:10分、23:30~24:00:30分

●建物

構造:RC 造、断熱:外壁 35mm、屋根 70mm、 床 60mm、

窓:透明二重ガラス(日中は内部日除け開) 隙間風:0.5 回/h、厨房換気:調理時 6~12 回/h 室間換気:居間一台所 10 回/h、居室-廊下 2 回/h (居間・居室容積基準)

内部発熱:4人家族、

●空調(予冷熱時間は冷暖房開始後 30 分間) 設定温湿度:暖房 20℃50% 、冷房 27℃60% 、 冷暖房時間:

居間:6:00-9:00、12:00-14:00、16:00-22:00、寝室:21:00-23:00、子供室:20:00-23:00″

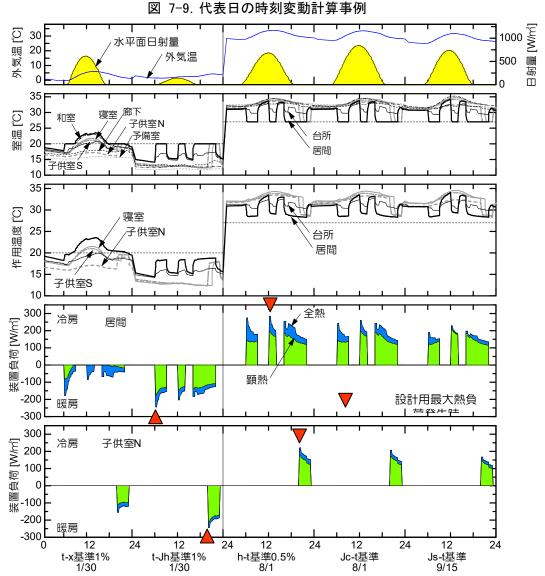


図 7-10. 冷暖房設計用気象条件下の時刻変動(東京、RC 造戸建て住宅、予冷熱 30 分)

8. 附録 A 気象テータの地点一覧表

(拡張アメダス気象データ 2010 年版の地点)

EA気象データの地点 No.1

地点 番号	地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]	地 番			地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]
10 宗谷岬	ソウヤミサキ	北海道	45.5	141.9	26	6	20	美国	ビクニ	北海道	43.3	140.6	75
30 稚内	ワッカナイ	宗谷支庁	45.4	141.7	3			神恵内	カモエナイ	後志支庁	43.1	140.4	50
40 浜鬼志別	ハマオニシベツ		45.3	142.2	13	6	40	余市	ヨイチ		43.2	140.8	20
50 沼川	ヌマカワ		45.2	141.9	23	6	50	小樽	オタル		43.2	141.0	25
60 沓形	クツガタ		45.2	141.1	14	6	60	岩内	イワナイ		43.0	140.5	33
70 豊富	ミイモイ		45.1	141.8	12	6	70	蘭越	ランコシ		42.8	140.5	39
80 浜頓別	ハマトンベツ		45.1	142.4	13	6	80	倶知安	クッチャン		42.9	140.8	176
90 中頓別	ナカトンベツ		45.0	142.3	25	6	90	寿都	スッツ		42.8	140.2	33
100 北見枝幸	キタミエサシ		44.9	142.6	7	7	00	真狩	マッカリ		42.8	140.9	440
110 歌登	ウタノボリ		44.8	142.5	14	7	10	喜茂別	キモベツ		42.8	140.9	264
120 中川	ナカガワ	北海道	44.8	142.1	22	-		黒松内	クロマツナイ		42.7	140.3	27
130 音威子府	オトイネップ	上川支庁	44.7	142.3	40	7	30	雄武	オウム	北海道	44.6	143.0	14
140 美深	ビフカ		44.5	142.3	77	7	40	興部	オコッペ	網走支庁	44.5	143.1	8
150 名寄	ナヨロ		44.4	142.5	89	7	50	西興部	ニシオコッペ		44.3	142.9	120
160 下川	シモカワ		44.3	142.6	140			紋別	モンベツ		44.3	143.4	16
170 士別	シベツ		44.2	142.4	135	7	70	湧別	ユウベツ		44.2	143.6	5
180 朝日	アサヒ		44.1	142.6	225	7	80	滝上	タキノウエ		44.2	143.1	165
190 和寒	ワッサム		44.0	142.4	138	7	90	常呂	- 10		44.1	144.0	4
200 江丹別	エタンベツ		43.9	142.2	140	8	00	遠軽	エンガル		44.1	143.5	80
210 比布	ピップ		43.9	142.5	167	8	10	佐呂間	サロマ		44.0	143.7	59
220 上川	カミカワ		43.8	142.8	324	8	20	網走	アバシリ		44.0	144.3	38
230 旭川	アサヒカワ		43.8	142.4	120	8	30	宇登呂	ウトロ		44.1	145.0	144
240 東川	ヒガシカワ		43.7	142.5	215	8	40	白滝	シラタキ		43.9	143.2	475
250 志比内	シビナイ		43.6	142.6	310	8	50	生田原	イクタハラ		43.9	143.5	198
260 美瑛	ビエイ		43.6	142.5	250	8	60	北見	キタミ		43.8	143.9	114
270 上富良野	カミフラノ		43.5	142.5	220	8	70	小清水	コシミズ		43.9	144.5	22
280 富良野	フラノ		43.3	142.4	174	8	80	斜里	シャリ		43.9	144.7	15
290 麓郷	ロクゴウ		43.3	142.5	315	8	90	留辺蘂	ルベシベ		43.7	143.5	325
300 幾寅	イクトラ		43.2	142.6	350	9	00	境野	サカイノ		43.7	143.6	184
310 占冠	シムカップ		43.0	142.4	332	9	10	美幌	ビホロ		43.8	144.2	60
320 天塩	テシオ	北海道	44.9	141.8	9	9	20	津別	ツベツ		43.7	144.0	100
330 遠別	エンベツ	留萌支庁	44.7	141.8	10	9	30	羅臼	ラウス	北海道	44.0	145.2	15
340 初山別	ショサンベツ		44.5	141.8	5	9	40	標津	シベツ	根室支庁	43.7	145.1	3
350 焼尻	ヤギシリ		44.4	141.4	34	9	50	中標津	ナカシベツ		43.5	145.0	50
360 羽幌	ハボロ		44.4	141.7	8	9	70	別海	ベツカイ		43.4	145.1	23
370 達布	タップ		44.0	141.9	30	9	80	根室	ネムロ		43.3	145.6	25
380 留萌	ルモイ		43.9	141.6	24	9	90	納沙布	ノサップ		43.4	145.8	12
390 増毛	マシケ		43.8	141.5	20	10	00	厚床	アットコ		43.2	145.3	30
400 幌糠	ホロヌカ		43.9	141.8	20	10	10	川湯	カワユ	北海道	43.6	144.5	158
410 浜益	ハママス	北海道	43.6	141.4	3	10	20	弟子屈	テシカガ	釧路支庁	43.5	144.5	198
420 厚田	アツタ	石狩支庁	43.4	141.4	5	10	30	阿寒湖畔	アカンコハン		43.4	144.1	430
430 新篠津	シンシノツ		43.2	141.6	9	10	40	標茶	シベチャ		43.3	144.6	32
440 山口	ヤマグチ		43.1	141.2	5	10	50	鶴居	ツルイ		43.2	144.3	38
450 石狩	イシカリ		43.2	141.4	5	10	60	中徹別	ナカテシベツ		43.2	144.1	80
460 札幌	サッポロ		43.1	141.3	17	10	70	榊町	サカキマチ		43.1	145.1	2
470 江別	エベツ			141.6	8			太田	オオタ		43.1	144.8	85
480 恵庭島松	エニワシママツ		42.9	141.6	30	10	90	白糠	シラヌカ		43.0	144.1	ç
490 支笏湖畔	シコツコハン		42.8	141.4	290	11	00	釧路	クシロ		43.0	144.4	5
500 朱鞠内	シュマリナイ	北海道		142.2	255			知方学	チッポマナイ		42.9	144.7	149
510 幌加内	ホロカナイ	空知支庁	44.0	142.2	159	11	20	陸別	リクベツ	北海道	43.5	143.7	207
520 石狩沼田				141.9	63			糠平	ヌカビラ	十勝支庁		143.2	540
530 深川	フカガワ			142.1	55			上士幌	カミシホロ			143.3	295
540 空知吉野				141.7	100			足寄	アショロ			143.6	90
550 滝川	タキカワ			141.9	50			本別	ホンベツ			143.6	67
	アシベツ			142.2	90			新得	シントク			142.8	178
ויא 🗩 טמכ	ツキガタ			141.6	50			鹿追	シカオイ			143.0	206
560 芦別 570 月形				0	50								
570 月形			43.4	141 8	16	11	90	駒場	コマバ		43.1	143 2	117
570 月形 580 美唄	ビバイ			141.8 141.8	16 42			駒場 芽室	メンロ			143.2 143.1	112 80
570 月形			43.2	141.8 141.8 141.7	16 42 13			駒場 芽室	メヤロ			143.2 143.1	80

[【]注記】1) 20、960、2560、3160、3640、5640の6地点は、気象観測が終了したため、含まれない。
2) 本表は、気象データシステムより頒布されている拡張アメダス気象データに含まれている地点情報(StnHis)を利用して作成した。

EA気象データの地点 No.2

1229 組囲	地点 番号	地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]	地点 番号		地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]
1230 高機	1210 帯広			42.9	143.2	38	1810	八戸	ハチノヘ	青森県	40.5	141.5	27
1240 勝内			十勝支庁	42.9		42					40.5		137
1250 上地か カナリケイ 42.6 143.1 251 1850 八成 月子甲 秋田県 40.4 140.0 27 1270 大津 オヤ 42.7 143.6 4 1870 県本 カルス 40.2 140.0 1270 大津 オヤ 42.7 143.6 4 1870 県本 カルス 40.2 140.5 5 1290 匹尾 ヒロ 42.5 143.3 87 1880 大佐 75.0 1 40.5 1 1870 県本 カルス 40.2 140.5 5 1290 匹尾 ヒロ 42.3 143.3 32 1890 庫角 カゲノ 40.0 140.8 57 1300 戸肩 79マ 北海道 42.7 141.1 99 190 鷹線 ユピ 40.0 140.8 57 1330 育野 イザ 42.8 143.3 187 1990 庫角 カゲノ 40.0 140.8 57 1330 育野 イザ 42.8 143.3 187 1990 馬森 オオケ 40.0 140.8 57 1320 大鷹 オオケ 42.6 141.3 150 1990 元素 オオケ 40.0 140.8 57 1320 大鷹 オオケ 42.6 141.3 150 1990 元素 オオケ 40.0 140.0 140.8 57 1340 月かけ トマコマ 42.6 141.3 150 1990 元素 オオケ 40.0 140.0 140.8 57 1340 月かけ トマコマ 42.6 141.3 150 1990 万米 オオケ 40.0 140.0 140.8 57 1340 月かけ トマコマ 42.6 141.5 6 1990 万米 オオケ 40.0 140.0 140.0 1340 万米 オオケ 40.0 140.0 140.8 57 1340 月かけ トマコマ 42.6 141.5 6 1990 万米 オオケ 40.0 140.0 140.0 1340 万米 オオケ 40.0 140.0 140.8 157 1370 扇川 74.2 140.6 8 1950 万仲合 アニア 40.0 140.0 140.8 157 1370 扇川 74.2 140.6 18 1950 万仲合 アニア 40.0 140.0 140.8 12 1370 扇川 74.2 140.6 18 1950 万仲合 アニア 40.0 140.0 140.8 12 1370 扇川 74.2 140.0 140.0 1970 宮尾口内 イブジサイ 39.6 140.0 140.8 12 140.0 140.0 1970 宮尾口内 イブジサイ 39.6 140.0 140.8 12 140.0 140.													408
1260 見別													38
1270 大津										秋田県			31
1280 大僧													6
1299 丘尾 ビロゲ 42.3 143.3 32 1890 産角 が外 40.2 140.8 121 1310 印牌 797 北陶道 42.7 141.9 20 1310 印牌 797 北陶道 42.7 141.9 20 1310 印牌 797 北魯道 74.7 141.9 20 1310 百瀬 74.9 140.8 140.8 123 1310 福朝 779 原展女子 42.8 142.1 56 1910 八幡平 1478・74.9 40.0 140.8 57 13130 森野 ゼリノ 42.6 141.3 150 1930 大房 オオガタ 40.0 140.0 140.1 131.0													29
1300 序屏													59
1310 朝別 水ツ 脂酸芹 42.8 142.1 56 1910 八噪平 パマンタイ 40.0 140.8 57 1320 大端 大水ケキ 42.7 141.1 390 1920 円虚 オオザタ 42.6 141.5 150 1930 大湯 オオザタ 40.0 140.0 140.1 1350 大湯 オオザタ 42.6 141.5 6 1950 所信 72.7 40.0 140.1 140.1 1350 大湯 オオザタ 42.6 141.5 6 1950 所信 72.7 40.0 140.1 140.1 1350 大湯 オオザタ 42.5 141.6 6 1950 所信 72.7 40.0 140.1 140.1 1370 期間 1390 か 42.6 141.9 10 1970 音音の 72.7 40.3 140.1 1370 期間 1390 空間 水パッツ 42.5 141.0 40 1970 音音の 72.7 40.3 15.0 1390 空間 水パッツ 42.5 141.0 40 2000 大正寺 外プラ 39.5 140.6 53 141.0 140.0 空間 140.1 140.0 空間 140.0 空間 140.1 140.0 空間			北海塔										
1320 大滝													
1333 종류													20
140 日がけ トプロマイ 42.6 141.5 6 1940 日が旧 グラウス 39.9 140.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													-3
1350 大岸 大井 42.6 141.6 8 1950 同任命 72.74 40.0 40.1 141.6 161 160 社無 74.9 39.7 140.1 1370 割川 人がり 42.6 141.9 10 1970 岩見ニ内 イブミサンナイ 39.7 140.3 51.380 円達 75.7 42.5 141.1 197 1990 回形湖 かりがう 39.6 140.6 73.3 1390 登別 人がり 42.5 141.1 197 1990 回形湖 かりがう 39.6 140.6 73.3 1400 登録 人がり 42.5 141.1 197 1990 回形湖 かりがり 39.7 140.7 23.3 1400 登録 人がり 日高支庁 42.5 141.0 40 2000 大正寺 ダイショウジ 39.5 140.2 23.4 1400 日高可別 とがた とがた 42.5 142.0 10 2020 本正 大ンショウ 39.3 140.3 141.4 1400 日高可別 シブト 42.5 142.3 60 2030 乗由利 ヒガシュリ 39.3 140.3 141.4 1400 日高で別 シブト 42.2 142.7 10 2050 条湯 ササか 39.2 140.1 1406 中午日 ナかキヤフ 42.2 142.8 80 2660 矢島 ヤシマ 39.9 140.1 1400 円付 大かキヤフ 42.2 142.8 80 2660 矢島 ヤシマ 39.0 140.5 73.4 1490 反列 42.5 140.4 10 2090 産市 タイチ 世球 40.1 141.7 74.7 第月 大きママ 39.2 140.5 73.4 1490 反列 42.5 140.4 10 2090 産市 タイチ 世球 40.1 141.7 74.7 第月 大きママ 39.2 140.5 74.4 140.1 140.3 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.4 140.5 140.5 140.4 140.5													6
1360 自書 シラオイ 42.6 141.9 6 1960 秋田 アキタ 39.7 140.1 1370 瀬川													120
1370 部川 人力 42.6													6
1880 円渡 円元 42.5 140.9 84 1880 1890 1997 39.6 140.6 7.5 1400 26m 人口ア 42.5 141.0 40 2000 人工产 47.7 39.5 140.2 2.5 1410 日高 日介 北南道 42.9 142.4 280 2010 人工市 47.7 39.5 140.5 2.5 1410 日高 日介 日南文庁 42.5 142.0 10 2000 人工产 47.7 39.5 140.1 1.1 1430 新和 シンワ 日南文庁 42.5 142.3 60 2030 東田利 比がシコリ 39.3 140.3 11.1 1440 前内 シンプ 42.5 142.3 60 2030 東田利 比がシコリ 39.3 140.6 15.1 1450 日市 シング 42.2 142.7 10 2000 人工产 42.7 39.7 39.8 140.5 17.1 1460 中作日 ナカキシス 42.2 142.9 80 2060 久居 ヤシマ 39.2 140.1 7.1 1470 瀬町 9万か7 42.2 142.8 83 2060 久居 ヤシマ 39.2 140.1 7.1 1470 瀬町 9万か7 42.3 140.3 8 2100 日本 サンド 39.2 140.5 7.1 1490 見万郎 オンヤンベ 北海道 42.5 140.4 10 2090 種市 タネイテ 8千里 40.4 141.7 7.1 1510 京 ヤクモ 原島文庁 42.1 140.6 12.5 2120 田下 エント 40.1 141.5 15.5 15.5 大田 カンチ 41.9 141.0 2.5 2120 田下 ステレ 40.1 141.1 1.5 15.5 大田 オンナ 40.1 141.1 140.8 15.5 15.5 大田 オンナ 40.1 141.2 43.8 140.8 1													55
1390 日割													56
1400 整新 1407 1423 141.0 40 2000 大正寺 47ら97岁 39.5 140.2 2 2 2 1411日高 1470 1420日高所別 1470 1420日高所別 1470 1470 1470 1470 39.5 140.5 3 1420 日高所別 1470 1470 1470 39.5 140.5 3 1410 1410 1410 1470 1													230
1410 日高 159カ 北海道 42.9 142.4 280 2010 大曲													20
1430 新印 シンア	1410 日高		北海道	42.9	142.4	280	2010	大曲			39.5	140.5	30
1440 静吟 シズナイ 42.3 142.4 10 2040 横手 31万 39.3 140.6 5.1 1450 三石 シグナタ 42.2 142.7 10 2050 条湯 キサカタ 39.2 140.5 7.1 1460 中杯 ブカオクス 42.2 142.8 83 2070 湯沢 14ブワ 39.0 140.5 7.1 1470 瀬河 ブカカ 41.2 142.9 80 2060 矢鳥 ヤシマ 39.0 140.5 7.1 1480 双沙岬 ズレギサ 41.9 143.2 63 2080 湯の比 エブワ 39.0 140.5 7.1 1480 双沙岬 ズレギサ 41.9 143.2 63 2080 湯の比 エブワ 39.0 140.5 7.1 1500 八雲 ヤクモ 液鳥女庁 42.3 140.4 10 2090 種市 タネイテ 岩手県 40.4 141.7 7.1 1501 京 ゼリ 42.1 140.6 125 2110 □ 戸 二人へ 40.3 141.3 8.1 1510 京 オオノ 41.9 140.7 25 2120 Ш形 ヤブヴ 40.1 141.6 25 2110 町 7.7 40.1 141.1 25 2110 町 7.7 40.1 141.1 2.5 2110 町 7.7 40.2 41.8 40.8 41.8	1420 日高門別	ヒダカモンベツ	日高支庁	42.5	142.0	10	2020	本荘	ホンジョウ		39.4	140.1	11
1450 三行 三分・ 242 142.7 10 2050 象別 井が夕 39.2 139.9 1460 中午日	1430 新和	シンワ		42.5	142.3	60	2030	東由利	ヒガシユリ		39.3	140.3	117
1460 中杵日 サカキマクス 42.2 42.9 80 2060 矢鳥 ヤシマ 39.2 41.0 7.1470 浦河 70万カウ 42.2 42.8 33 2070 海沢 1470 39.2 41.0 7.1470 浦河 70万カウ 42.2 42.8 33 2080 湯の佐 149 39.0 41.0 33.1 41.0 39.0 41.0	1440 静内	シズナイ		42.3	142.4	10	2040	横手	ヨコテ		39.3	140.6	59
1470 浦河 95カワ 42.2 44.8 33 2070 湯沢 14ヴワ 39.0 140.5 7.1480 2014m 11Fe9+	1450 三石	ミツイシ		42.2	142.7	10	2050	象潟			39.2	139.9	5
1480 7년 7년 7년 7년 7년 7년 7년 7	1460 中杵臼	ナカキネウス		42.2	142.9	80	2060	矢島			39.2	140.1	72
1490 長万郎													74
1500 八雲 ヤクモ 渡島支庁 42.3 140.3 8 2100 軽米 加収イ 40.3 141.5 1510 森 日り													335
1510 森 刊 42.1 140.6 125 2110 二戸 二八へ 40.3 141.3 8 1520 川汲 かか? 41.9 141.0 25 2120 山形 ヤマガタ 40.1 141.6 29 1530 大野 オオノ 41.8 140.8 35 2140 荒屋 アラヤ 40.1 141.1 29 1550 木古内 キコナイ 41.7 140.4 6 2150 奥中山 オクナかヤマ 40.1 141.1 29 1550 木古内 キコナイ 41.7 140.4 6 2150 奥中山 オクナかヤマ 40.0 141.4 39 1570 世										岩手県			70
1520 川汲 かがき 41.9 141.0 25 2120 山形 ヤマガタ 40.1 141.6 29 1530 大野 オオノ 41.9 140.7 25 2130 久慈 グラ 40.2 141.8 1540 魔館 ハロゲテ 41.8 140.8 35 2140 荒屋 アラヤ 40.1 141.1 29 1550 木古内 キコナイ 41.7 140.4 6 2150 奥中山 オケナかマ 40.1 141.2 43 1560 松前 マツマエ 41.4 140.1 30 2160 葛巻 グズマキ 40.0 141.4 39 1580 今金 イマカネ 桧山文庁 42.4 140.0 19 2180 岩手松尾 イワテマツオ 40.0 141.2 20 1580 今金 イマカネ 桧山文庁 42.4 140.0 19 2180 岩手松尾 イワテマツオ 40.0 141.2 20 1580 今金 イマカネ 桧山文庁 42.4 140.0 19 2180 岩手松尾 イワテマツオ 40.0 141.8 11 1610 第 グズラ 41.9 140.3 53 2100 が展 フワマ 39.9 141.2 20 1600 熊石 グマイシ 41.9 140.3 53 2210 が本 オモト 39.8 141.8 11 1610 第 グズラ 41.9 140.1 44 2220 数川 ヤブカワ 39.8 141.8 11 1610 で 12.2 140.5 140.0 14.1 49.0 150 150 150 150 150 150 150 150 150 15			波島文厅										153
1530 大野													87
1540 函館													290 5
1550 木古内 キコナイ 41.7 140.4 6 2150 奥中山 がかかマ 40.1 141.2 43 1560 松前 マツマエ 41.4 140.1 30 2160 葛巻 グズマキ 40.0 141.4 39 1570 世たな セクナ 北海道 42.5 139.9 10 2170 曽代 グダイ 40.0 141.1 27 1580 今金 イマかな 検出支庁 42.2 139.6 5 2190 野摩 コウマ 39.9 141.2 20 1600 熊石 クマイシ 42.1 140.0 34 2200 岩泉 イワイズミ 39.9 141.2 20 1610 鶉 グズラ 41.9 140.3 53 2210 小本 オモト 39.8 141.8 11 1620 江差 エサシ 41.9 140.1 4 2220 藪川 ゲブガワ 39.7 141.3 68 1630 大田野沢 オグマ 青森県 41.5 140.9 14 2220 藪川 ゲブカウ 39.7 141.2 15 1650 小田野沢 オグノサワ 41.3 141.2 3 2240 藍剛 2270 紫カウ グサカイ 39.7<													
1560 松前 マツマエ 41.4 140.1 30 2160 葛巻 グズマキ 40.0 141.4 39 1570 世たな セタナ 北海道 42.5 139.9 10 2170 普代 ブダイ 40.0 141.9 141.0 2170 普代 ブダイ 40.0 141.1 27 1590 奥尻 オグシリ 42.2 139.6 5 2190 好摩 コヴィ 39.8 141.2 20 1600 熊石 グズラ 41.9 140.0 34 2200 岩泉 イヴズえ 39.8 141.2 21 1610 第 グズラ 41.9 140.1 4 2200 岩泉 イヴズえ 39.8 141.2 10 1620 江産 江芝 オザシ 41.9 140.1 4 2220 藪川 ゲブカワ 39.8 141.3 68 1630 大間 オオマ 青森県 41.5 140.9 14 2230 栗石 ジブクシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシン													
1570 世たな セタナ 北海道 42.5 139.9 10 10 10 10 11 14 1580 今金 イマカネ 桧山支庁 42.4 140.0 19 1580 今金 イマカネ 桧山支庁 42.4 140.0 19 1800 岩手松尾 イワテマツオ 40.0 141.1 27 1590 奥尻 オクシリ 42.2 139.6 5 2190 好摩 コウマ 39.9 141.2 20 1600 熊石 ヤイシ 42.1 140.0 34 2200 岩泉 イワイズミ 39.8 141.8 1610 割 ウズラ 41.9 140.3 53 2210 小木 木干ト 39.8 141.8 1610 乳 1620 江差 エザシ 41.9 140.1 4 2220 敷川 ヤブカワ 39.8 141.8 1630 大間 オオマ 青森県 41.5 140.9 14 2230 雫石 シズクイシ 39.7 141.0 19 1640 むつ ムツ 41.3 141.2 3 2240 盛岡 モリオカ 39.7 141.0 19 1660 今別 イマベツ 41.2 141.4 6 2250 区界 クザカイ 39.7 141.4 76 1660 今別 イマベツ 41.2 140.5 30 2260 宮古 ミヤコ 39.6 142.0 47 1660 中浦 シウラ 41.1 140.8 15 2270 紫波 シワ 39.6 141.7 19 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サブウチ 39.5 140.8 32 1700 五所川原 ゴショガフラ 40.8 140.5 9 2300 大道 オオノサマ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.6 140.6 40 2370 江刺 エサク 39.1 141.1 10 1770 黒石 70日〜 40.6 140.8 890 2380 住田 ステタ 39.1 141.1 14 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 ステタ 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオプナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオプナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオプナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオプナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオプナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 477													390
1580 今金 イマカネ 桧山支庁 42.4 140.0 19 2180 岩手松尾 イフテマツオ 40.0 141.1 27 1590 奥尻 オクシリ 42.2 139.6 5 2190 好摩 コウマ 39.9 141.2 20 1600 熊石 グマイシ 42.1 140.0 34 2200 岩泉 イワイズミ 39.8 141.8 11 1610 鶉 グズラ 41.9 140.1 4 2200 岩泉 イアイズミ 39.8 141.8 11 1620 江差 エザシ 41.9 140.1 4 2220 敷川 ヤブカワ 39.8 141.0 19 1630 大間 オオマ 青森県 41.5 140.9 14 2230 零石 シズカイシ 39.7 141.0 19 1640 むつ ムツ 41.3 141.2 3 2240 盛岡 ゼリオカ 39.7 141.0 19 1640 むつ ムツ 41.2 141.4 6 2250 区界 グザカイ 39.7 141.0 76 1650 小田野沢 オグノサワラ 41.1 140.8 15 2270 紫波 カブカ 39.6 141.2 17			北海道										8
1590 奥尻													275
1600 熊石 クマイシ 42.1 140.0 34 2200 岩泉 イワイズ 39.8 141.8 11 1610 第 ウズラ 41.9 140.3 53 2210 小本 活下ト 39.8 141.8 11 1620 江差 エサシ 41.9 140.1 4 2220 藪川 ヤブカワ 39.8 141.3 68 1430 大間 オオマ 青森県 41.5 140.9 14 2230 雫石 シズクイシ 39.7 141.0 19 1640 むつ ムツ 41.3 141.2 3 2240 盛岡 モリオカ 39.7 141.2 15 1650 小田野沢 オダノヤワ 41.2 141.4 6 2250 区界 クザカイ 39.7 141.4 76 1660 今別 イマペツ 41.2 140.5 30 2260 宮古 ミヤコ 39.6 142.0 4 1670 脇野沢 ワキノサワ 41.1 140.8 15 2270 紫波 シワ 39.6 141.2 17 1680 市浦 シウラ 41.1 140.8 15 2270 紫波 シワ 39.6 141.7 19 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サブウチ 39.5 140.8 32 1700 五所川原 ゴショガワラ 40.8 140.5 9 2300 大迫 オオハサマ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.5 27 1750 深浦 フカウラ 40.6 140.5 30 2360 若研 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.5 30 2360 若研 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.5 30 2360 在研 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.6 40 2370 江刺 エサシ 39.2 141.2 4 1780 酸ケ湯 スカユ 40.6 140.6 40 2370 江刺 エサシ 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ													205
1610													112
1630 大間 オオマ 青森県 41.5 140.9 14 2230 雫石 シズクイシ 39.7 141.0 19 1640 むつ ムツ 41.3 141.2 3 2240 盛岡 モリオカ 39.7 141.2 15 1650 小田野沢 オダノサワ 41.2 141.4 6 2250 区界 クザカイ 39.6 141.2 15 1660 今別 イマベツ 41.2 140.5 30 2260 宮古 ミヤコ 39.6 142.0 4 1670 脇野沢 ワキノサワ 41.1 140.8 15 2270 紫波 シワ 39.6 141.2 17 1680 市浦 シウラ 41.1 140.3 20 2280 川井 カワイ 39.6 141.7 19 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サワウチ 39.5 140.8 32 1700 五所川原 ゴショガワラ 40.8 140.5 9 2300 大迫 オオハサマ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 7カウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.1 10 1770 黒石 クロイシ 40.6 140.5 30 2360 岩柳 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.8 890 2380 住田 スミタ 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.7 39.1 141.0 39.0 141.0 39.0 141.0 39.0 141.0 39.0 141.0 39.0 141.0 39.0 141.0 39.0 141.0 39.0 141.0 39.0 141.0 39.0		ウズラ		41.9	140.3	53	2210	小本	オモト		39.8	142.0	10
1640 むつ ムツ 41.3 141.2 3 2240 盛岡 刊力力 39.7 141.2 15 1650 小田野沢 オダノサワ 41.2 141.4 6 2250 区界 グザカイ 39.7 141.4 76 1660 今別 イマペツ 41.2 140.5 30 2260 宮古 ミヤコ 39.6 142.0 4 1670 脇野沢 ワキノサワ 41.1 140.8 15 2270 紫波 シワ 39.6 141.2 17 1680 市浦 シウラ 41.1 140.3 20 2280 川井 カワイ 39.6 141.7 19 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サワウチ 39.5 140.8 32 1700 五所川原 ゴショガフラ 40.8 140.5 9 2300 大迫 オオノサマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.8 140.8 3 2310 山田 ヤマダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 <td>1620 江差</td> <td>エサシ</td> <td></td> <td>41.9</td> <td>140.1</td> <td>4</td> <td>2220</td> <td>藪川</td> <td>ヤブカワ</td> <td></td> <td>39.8</td> <td>141.3</td> <td>680</td>	1620 江差	エサシ		41.9	140.1	4	2220	藪川	ヤブカワ		39.8	141.3	680
1650 小田野沢 オダノサワ 41.2 141.4 6 2250 区界 グザカイ 39.7 141.4 76 1660 今別 イマペツ 41.2 140.5 30 2260 宮古 ミヤコ 39.6 142.0 4 1670 脇野沢 ワキノサワ 41.1 140.8 15 2270 紫波 シワ 39.6 141.2 17 1680 市浦 シウラ 41.1 140.3 20 2280 川井 カワイ 39.6 141.7 19 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サワウチ 39.5 140.8 32 1700 五所川原 ゴショガワラ 40.8 140.5 9 2300 大迫 オオノサマダ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 大所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 6 1750 深浦 <td>1630 大間</td> <td>オオマ</td> <td>青森県</td> <td>41.5</td> <td>140.9</td> <td>14</td> <td>2230</td> <td>雫石</td> <td>シズクイシ</td> <td></td> <td>39.7</td> <td>141.0</td> <td>195</td>	1630 大間	オオマ	青森県	41.5	140.9	14	2230	雫石	シズクイシ		39.7	141.0	195
1660 今別 イマベツ 41.2 140.5 30 2260 宮古 ミヤコ 39.6 142.0 4 1670 脇野沢 ワキノサワ 41.1 140.8 15 2270 紫波 シワ 39.6 141.2 17 1680 市浦 シウラ 41.1 140.3 20 2280 川井 カワイ 39.6 141.7 19 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サワウチ 39.5 140.8 32 1700 五所川原 ゴショガワラ 40.8 140.5 9 2300 大迫 オオノサマ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 6 1750 深浦 アジガサラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.1 10 1770 黒石	1640 むつ	ムツ		41.3	141.2	3	2240	盛岡	モリオカ		39.7	141.2	155
1670 脇野沢 ワキノサワ 41.1 140.8 15 2270 紫波 シワ 39.6 141.2 17 1680 市浦 シウラ 41.1 140.3 20 2280 川井 カワイ 39.6 141.7 19 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サワウチ 39.5 140.8 32 1700 五所川原 ゴショガワラ 40.8 140.5 9 2300 大迫 オオハサマ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 6 1750 深浦 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1760 弘前 ヒロサキ 40.6 140.5 30 2360 若柳 カオイシ 39.1 141.1 10 1770 黒石 <td>1650 小田野沢</td> <td>オダノサワ</td> <td></td> <td>41.2</td> <td>141.4</td> <td>6</td> <td>2250</td> <td>区界</td> <td>クザカイ</td> <td></td> <td>39.7</td> <td>141.4</td> <td>760</td>	1650 小田野沢	オダノサワ		41.2	141.4	6	2250	区界	クザカイ		39.7	141.4	760
1680 市浦 シウラ 41.1 140.3 20 2280 川井 カワイ 39.6 141.7 19.9 1690 蟹田 カニタ 41.0 140.6 5 2290 沢内 サワウチ 39.5 140.8 32.1 1700 五所川原 ゴショガワラ 40.8 140.5 9 2300 大迫 オオハサマ 39.5 141.3 14.1 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.1 10 1770 黒石 クロイシ 40.6 140.5 30 2360 若柳 フカヤナギ 39.2 141.2 4 178													43
1690 蟹田 カニタ 41.0 140.6 5 2290 沢内内 サワウチ 39.5 140.8 32 1700 五所川原 ゴショガワラ 40.8 140.5 9 2300 大迫 オオハサマ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.1 10 1770 黒石 クロイシ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1780 酸ケ湯 スカユ 40.6 140.6 40 2370 江刺 エサシ 39.1 141.6 8 1790 三沢													170
1700 五所川原 ゴショガフラ 40.8 140.5 9 2300 大追 オオハサマ 39.5 141.3 14 1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.1 10 1770 黒石 クロイシ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 スタタ オオフナト 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 3 <													192
1710 青森 アオモリ 40.8 140.8 3 2310 山田 ヤマダ 39.5 142.0 2 1720 野辺地 ノヘジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 27 1740 鰺ケ沢 アジガサフ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.9 10 1760 弘前 ヒロサキ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.6 40 2370 江刺 エサシ 39.2 141.2 4 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 スタタ オオフナト 39.1 141.7 3 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 3 <td></td> <td>327</td>													327
1720 野辺地 八へジ 40.9 141.1 43 2320 湯田 ユダ 39.3 140.8 25 1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.9 10 1760 弘前 ヒロサキ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.6 40 2370 江刺 エサシ 39.2 141.2 4 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 スタク オオフナト 39.1 141.7 3 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 3													140
1730 六ケ所 ロッカショ 40.9 141.3 80 2330 遠野 トオノ 39.3 141.5 27 1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.9 17 1760 弘前 ヒロサキ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.6 40 2370 江刺 エサシ 39.2 141.2 4 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 スミタ 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 3													24
1740 鰺ケ沢 アジガサワ 40.8 140.2 40 2340 北上 キタカミ 39.3 141.1 6 1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.9 141.9 1760 弘前 ヒロサキ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.6 40 2370 江刺 エサシ 39.2 141.2 4 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 スミタ 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオプナト 39.1 141.7 3													250
1750 深浦 フカウラ 40.6 139.9 66 2350 釜石 カマイシ 39.3 141.9 1760 弘前 ヒロサキ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.6 40 2370 江刺 エサシ 39.2 141.2 4 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 スミタ 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 3													273
1760 弘前 ヒロサキ 40.6 140.5 30 2360 若柳 ワカヤナギ 39.1 141.1 10 1770 黒石 クロイシ 40.6 140.6 40 2370 江刺 エサシ 39.2 141.2 4 1780 酸ケ湯 スカユ 40.6 140.8 890 2380 住田 スミタ 39.1 141.6 8 1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 3													61
1770 黒石グロイシ40.6140.6402370 江刺エサシ39.2141.241780 酸ケ湯スカユ40.6140.88902380 住田スミタ39.1141.681790 三沢ミサワ40.7141.4392390 大船渡オオプナト39.1141.73													100
1780 酸ケ湯スカユ40.6140.88902380 住田スミタ39.1141.681790 三沢ミサワ40.7141.4392390 大船渡オオフナト39.1141.73													100
1790 三沢 ミサワ 40.7 141.4 39 2390 大船渡 オオフナト 39.1 141.7 3													42 80
													80 37
10101 L 2011 C 27 41 41 141 / 47 /401 C E 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1790 三沢 1800 十和田	トワダ		40.7	141.4	39 42			イチノセキ		38.9	141.7	37 32

EA気象データの地点 No.3

 地点 番号	地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]	地点 番号		地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]
2410 千厩	センマヤ	岩手県	38.9	141.3	120	3010	広野	ヒロノ	福島県	37.2	141.0	43
2420 駒ノ湯	コマノユ	宮城県	38.9	140.8	525	3020	田島	タジマ		37.2	139.8	570
2430 気仙沼	ケセンヌマ		38.9	141.6	62	3030	白河	シラカワ		37.1	140.2	355
2440 川渡	カワタビ		38.7	140.8	170	3040	石川	イシカワ		37.1	140.5	290
2450 築館	ツキダテ		38.7	141.0	25		桧枝岐	ヒノエマタ		37.0	139.4	930
2460 米山	ヨネヤマ		38.6	141.2	5		上遠野	カトオノ		37.0	140.7	125
2470 志津川	シヅガワ		38.7	141.5	38		東白川	ヒガシシラカワ		36.9	140.4	183
2480 古川	フルカワ		38.6	140.9	28		小名浜	オナハマ		36.9	140.9	3
2490 大衡	オオヒラ		38.5	140.9	55		北茨城	キタイバラキ	茨城県	36.8	140.8	45
2500 鹿島台	カシマダイ		38.5	141.1	3	3100		ダイゴ		36.8	140.3	120
2510 石巻	イシノマキ		38.4	141.3	43	3110		オセ		36.6	140.3	95
2520 新川	ニッカワ		38.3	140.6	264	3120		ヒタチ		36.6	140.7	52
2530 塩釜	シオガマ		38.3	141.0	105	3130		カサマ		36.4	140.2	65
2540 江ノ島	エノシマ		38.4	141.6	40	3140		∃. ∃.		36.4	140.5	29
2550 仙台	センダイ		38.3	140.9	39	3150		コガ		36.2	139.7	20
2570 白石 2580 亘理	シロイシ ワタリ		38.0	140.6	86 8	3170 3180		シモツマ ホコタ		36.2	139.9 140.5	20 32
2580 旦垤 2590 丸森	マルモリ		38.0 37.9	140.9 140.8	18	3190		ルコタ ツクバ		36.2 36.1	140.5	32 25
2600 飛島	トビシマ	山形県	39.2	139.5	58	3200		ツ チ ウラ		36.1	140.1	26
2610 海島	サカタ	山形県	38.9	139.5	3	3210		カシマ		36.0	140.2	37
2620 差首鍋	サスナベ		38.9	140.2	88		能分崎	リュウガサキ		35.9	140.2	4
2630 金山	カネヤマ		38.9	140.3	170	3230		ナス	栃木県	37.1	140.0	749
2640 鶴岡	ツルオカ		38.7	139.8	16		五十里	イカリ	1//// 1/275	36.9	139.7	620
2650 狩川	カリカワ		38.8	140.0	17	3250		クロイソ		37.0	140.0	343
2660 新庄	シンジョウ		38.8	140.3	105		土呂部	ドロブ		36.9	139.6	925
2670 向町	ムカイマチ		38.8	140.5	212		大田原	オオタワラ		36.9	140.0	215
2680 肘折	ヒジオリ		38.6	140.2	330		奥日光	オクニッコウ		36.7	139.5	1292
2690 尾花沢	オバナザワ		38.6	140.4	106	3290		イマイチ		36.7	139.7	414
2700 鼠ケ関	ネズガセキ		38.6	139.6	7	3300		シオヤ		36.8	139.9	255
2710 村山	ムラヤマ		38.5	140.3	80	3310		カラスヤマ		36.7	140.1	162
2720 大井沢	オオイサワ		38.4	140.0	440	3320		カヌマ		36.6	139.7	165
2730 左沢	アテラザワ		38.4	140.2	133		宇都宮	ウツノミヤ		36.5	139.9	119
2740 山形	ヤマガタ		38.3	140.3	153	3340	真岡	モオカ		36.5	140.0	91
2750 長井	ナガイ		38.1	140.0	210	3350	佐野	サノ		36.3	139.6	39
2760 小国	オグニ		38.1	139.7	140	3360	小山	オヤマ		36.3	139.8	44
2770 高畠	タカハタ		38.0	140.2	220	3370	藤原	フジワラ	群馬県	36.9	139.1	700
2780 高峰	タカミネ		38.0	140.0	250	3380	水上	ミナカミ		36.8	139.0	531
2790 米沢	ヨネザワ		37.9	140.1	245	3390	草津	クサツ		36.6	138.6	1223
2800 茂庭	モニワ	福島県	37.9	140.4	200	3400		ヌマタ		36.7	139.1	439
2810 梁川	ヤナガワ		37.9	140.6	42	3410	中之条	ナカノジョウ		36.6	138.9	354
2820 桧原	ヒバラ		37.7	140.1	824	3420		タシロ		36.5	138.5	1230
2830 福島	フクシマ		37.8	140.5	67	3430		マエバシ		36.4	139.1	112
2840 相馬	ソウマ			140.9	9	3440		キリュウ		36.4	139.3	87
2850 喜多方	キタカタ		37.7	139.9	212		上里見	カミサトミ		36.4	138.9	183
2860 鷲倉	ワシクラ		37.7	140.3	1220		伊勢崎	イセサキ		36.3	139.2	64
2870 飯舘	イイタテ		37.7	140.7	446		西野牧	ニシノマキ		36.2		375
2880 西会津	ニシアイヅ		37.6	139.7	165	3480		タテバヤシ		36.2	139.5	21
2890 猪苗代	イナワシロ ニホンマツ		37.6	140.1 140.4	522	3490		カンナ ヨリイ	埼玉県	36.1	138.9	357
2900 二本松			37.6		240	3500			坷玉宗	36.1	139.2	105
2910 金山 2920 若松	カネヤマ		37.5 37.5	139.5 139.9	324	3510 3520		クマガヤ クキ		36.2 36.1	139.4 139.6	30 12
2920 石松 2930 船引	ワカマツ フネヒキ		37.5 37.4	140.6	212 421	3520		クキ チチブ		36.0	139.6	12 232
2940 浪江	ナミエ		37.5	141.0	421	3540		ハトヤマ		36.0	139.1	232 44
2950 只見	タダミ タ		37.3	139.3	377		/海山 さいたま	サイタマ		35.9	139.3	8
2960 郡山	コオリヤマ		37.3	140.3	249	3560		コシガヤ		35.9	139.8	5
2970 川内	カワウチ		37.4	140.8	410	3570		トコロザワ		35.8	139.6	119
2980 南郷	ナンゴウ		37.3	139.5	494		小河内	オゴウチ	東京都	35.8	139.4	530
2990 湯本	ユモト		37.3	140.1	640	3590		オウメ	~ ハハロ	35.8	139.1	155
3000 小野新町	オノニイマチ		37.3	140.6	433	3600		ネリマ		35.7	139.7	38
2000 : 1, 王141前	7/2-137		57.5	1-10.0	733	3000	עייזיעיוי	11.7.1		55.7	100.7	

EA気象データの地点 No.4

地点 番号	地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]	地点 番号		地名	都道府県名	緯度 [°]	経度 [°]	根 [
610 八王子	ハチオウジ	東京都	35.7	139.3	123	4210	勝沼	カツヌマ	山梨県	35.7	138.7	
3620 府中	フチュウ		35.7	139.5	59	4220	大月	オオツキ		35.6	138.9	
3630 東京	トウキョウ		35.7	139.8	6	4230	上九一色	カミクイシキ		35.5	138.6	
3650 大島	オオシマ		34.7	139.4	74	4240	切石	キリイシ		35.5	138.4	
3660 新島	ニイジマ		34.4	139.3	9	4250	河口湖	カワグチコ		35.5	138.8	
3670 三宅島	ミヤケジマ		34.1	139.5	36	4260	山中	ヤマナカ		35.4	138.8	
3680 八丈島	ハチジョウジマ		33.1	139.8	151	4270	南部	ナンブ		35.3	138.4	
3690 父島	チチジマ		27.1	142.2	3	4280	井川	イカワ	静岡県	35.2	138.2	
3700 佐原	サワラ	千葉県	35.9	140.5	37	4290	御殿場	ゴテンバ		35.3	138.9	
3710 我孫子	アビコ		35.9	140.0	20	4300	吉原	ヨシワラ		35.2	138.7	
3720 船橋	フナバシ		35.7	140.0	28	4310	三島	ミシマ		35.1	138.9	
3730 佐倉	サクラ		35.7	140.2	5	4320	佐久間	サクマ		35.1	137.8	
3740 銚子	チョウシ		35.7	140.9	20	4330	川根本町	カワネホンチョウ		35.1	138.1	
3750 横芝	ヨコシバ		35.7	140.5	6	4340	清水	シミズ		35.1	138.5	
3760 千葉	チバ		35.6	140.1	4	4350		アジロ		35.0	139.1	
3770 茂原	モバラ		35.4	140.3	9	4360		シズオカ		35.0	138.4	
3780 木更津	キサラヅ		35.4	139.9	5	4370		テンリュウ		34.9	137.8	
3790 牛久	ウシク		35.4	140.1	30	4380		ハママツ		34.7	137.7	
3800 坂畑	サカハタ		35.2	140.1	120		菊川牧之原			34.8	138.1	
3810 鴨川	カモガワ		35.1	140.1	5	4400		マツザキ		34.8	138.8	
3820 勝浦	カツウラ		35.2	140.3	12	4410		イナトリ		34.8	139.0	
3830 館山	タテヤマ		35.0	139.9	6	4420		1719 179		34.7	137.9	
3840 海老名	エビナ	神奈川県	35.4	139.4	18		石山 御前崎	オマエザキ		34.6	138.2	
3850 横浜	ヨコハマ	11/20/1138	35.4	139.7	39		石廊崎	イロウザキ		34.6	138.8	
3860 辻堂	ツジドウ		35.3	139.5	5	4450		アイサイ	愛知県	35.2	136.7	_
3870 小田原	オダワラ		35.3	139.2	28	4460		イナブ	女川宗	35.2	137.5	
3880 三浦	ミウラ		35.2	139.2	42		名古屋	ナゴヤ		35.2	137.0	
3890			36.9	139.6						35.2		
	ノザワオンセン	長野県			571	4480		ト ∃タ			137.2	
3900 信濃町	シナノマチ		36.8	138.2	685	4490		トウカイ		35.0	136.9	
3910 飯山	イイヤマ		36.9	138.4	313	4500		オカザキ		34.9	137.2	
3920 白馬	ハクバ		36.7	137.9	703	4510		シンシロ		34.9	137.5	
3930 長野	ナガノ		36.7	138.2	418	4520		ガマゴオリ		34.8	137.2	
3940 大町	オオマチ		36.5	137.8	784		南知多	ミナミチタ		34.7	136.9	
3950 信州新町	シンシュウシンマ	?5	36.5	138.0	509	4540		トヨハシ		34.8	137.3	
3960 菅平	スガダイラ		36.5	138.3	1253		伊良湖	イラコ		34.6	137.1	
3970 上田	ウエダ		36.4	138.3	502	4560	河合	カワイ	岐阜県	36.3	137.1	
3980 穂高	ホタカ		36.3	137.9	540	4570		カミオカ		36.3	137.3	
3990 東御	トウミ		36.4	138.4	958	4580	白川	シラカワ		36.3	136.9	
4000 軽井沢	カルイザワ		36.3	138.5	999	4590	栃尾	トチオ		36.2	137.5	
4010 松本	マツモト		36.2	138.0	610	4600	高山	タカヤマ		36.2	137.3	
4020 立科	タテシナ		36.3	138.3	715	4610	六厩	ムマヤ		36.1	137.0	
4030 佐久	サク		36.2	138.5	683	4620	宮之前	ミヤノマエ		36.0	137.4	
4040 奈川	ナガワ		36.1	137.7	1068	4630	長滝	ナガタキ		35.9	136.8	
4050 諏訪	スワ		36.0	138.1	760	4640	萩原	ハギワラ		35.9	137.2	
4060 開田	カイダ		35.9	137.6	1130	4650	八幡	ハチマン		35.8	137.0	
4070 木曽平沢	キソヒラサワ		36.0	137.8	900	4660	宮地	ミヤジ		35.8	137.3	
4080 辰野	タツノ		36.0	138.0	729	4670	樽見	タルミ		35.6	136.6	
4090 原村	ハラムラ		36.0	138.2	1017	4680		カナヤマ		35.7	137.2	
4100 野辺山	ノベヤマ		35.9	138.5	1350	4690		ミノ		35.6	136.9	
4110 木曽福島	キソフクシマ		35.8	137.7	750	4700		クロカワ		35.6	137.3	
4120 伊那	イナ		35.8	138.0	674		揖斐川	イビガワ		35.5	136.6	
4130 南木曽	ナギソ		35.6	137.6	560		美濃加茂	ミノカモ		35.4	137.0	
4140 飯島	イイジマ		35.7	137.9	728	4730		エナ		35.4	137.4	
4150 飯田	イイダ		35.5	137.8	516		中津川	エク ナカツガワ		35.5	137.5	
				137.7	940		サルバー 関ケ原				136.5	
4160 浪合 4170 南信漕	ナミアイ		35.4					セキガハラ		35.4		
4170 南信濃	ミナミシナノ	ili#IIIP	35.3	137.9	407	4760		オオガキ		35.4	136.6	
4180 大泉	オオイズミ	山梨県	35.9	138.4	867	4770		ギフ		35.4	136.8	
4190 韮崎	ニラサキ		35.7	138.4	341	4780 4790	多治見	タジミ クワナ	三重県	35.3 35.1	137.1	
4200 甲府	コウフ		35.7	138.6	273						136.7	

EA気象データの地点 No.5

	地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]	地点 番号		地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]
4810 亀山	カメヤマ	三重県	34.9	136.5	70	5410	大野	オオノ	福井県	36.0	136.5	182
4820 上野	ウエノ		34.8	136.1	159	5420	今庄	イマジョウ		35.8	136.2	128
4830 津	ツ		34.7	136.5	3	5430	敦賀	ツルガ		35.7	136.1	2
4840 小俣	オバタ		34.5	136.7	10	5440	美浜	ミハマ		35.6	135.9	10
4850 粥見	カユミ		34.4	136.4	120	5450	小浜	オバマ		35.5	135.8	10
4860 鳥羽	トバ		34.5	136.8	2	5460		イマヅ	滋賀県	35.4	136.0	88
4870 南勢	ナンセイ		34.3	136.7	6	5470		トラヒメ		35.4	136.2	90
4880 紀伊長島	キイナガシマ		34.2	136.3	3		南小松	ミナミコマツ		35.2	136.0	90
4890 尾鷲	オワセ		34.1	136.2	15	5490		ヒコネ		35.3	136.2	87
4900 熊野新鹿	クマノアタシカ	+<	33.9	136.1	23	5500		ガモウ		35.1	136.2	128
4910 粟島	アワシマ	新潟県	38.5	139.3	4	5510		オオツ		35.0	135.9	86
4920 弾崎	ハジキザキ		38.3	138.5	58	5520		シガラキ		34.9	136.1	265
4930 村上	ムラカミ		38.2	139.5	10	5530		ツチヤマ	= ###=	34.9	136.3	263
4940 相川 4950 両津	アイカワ リョウツ		38.0 38.1	138.2 138.4	6 2	5540 5550		タイザ ミヤヅ	京都府	35.7 35.6	135.1 135.2	42 2
4960 中条	ナカジョウ		38.1	139.4	27	5560		マイヅル		35.5	135.2	2
4970 下関	シモセキ		38.1	139.4	36		福知山	フクチヤマ		35.3	135.1	17
4980 新潟	ニイガタ		37.9	139.0	2	5580		ミヤマ		35.3	135.6	200
4990 羽茂	ハモチ		37.8	138.3	11	5590		ソノベ		35.1	135.5	134
5000 新津	ニイツ		37.8	139.1	3	5600		キョウト		35.0	135.7	41
5010 巻	マキ		37.8	138.9	2		京田辺	キョウタナベ		34.8	135.8	50
5020 寺泊	テラドマリ		37.6	138.8	44	5620		セ	大阪府	34.9	135.5	235
5030 三条	サンジョウ		37.6	139.0	9	5630		ヒラカタ		34.8	135.7	26
5040 津川	ツガワ		37.7	139.4	100	5650		オオサカ		34.7	135.5	23
5050 長岡	ナガオカ		37.5	138.8	23	5660	生駒山	イコマヤマ		34.7	135.7	626
5060 柏崎	カシワザキ		37.4	138.6	7	5670	堺	サカイ		34.5	135.5	30
5070 入広瀬	イリヒロセ		37.4	139.1	230	5680	熊取	クマトリ		34.4	135.4	68
5080 大潟	オオガタ		37.2	138.3	34	5690	香住	カスミ	兵庫県	35.6	134.6	5
5090 小出	コイデ		37.2	139.0	98	5700	豊岡	トヨオカ		35.5	134.8	3
5100 高田	タカダ		37.1	138.2	13		兎和野高原			35.4	134.6	540
5110 安塚	ヤスヅカ		37.1	138.5	126	5720		ワダヤマ		35.3	134.8	80
5120 十日町	トオカマチ		37.1	138.7	170	5730		イクノ		35.2	134.8	320
5130 糸魚川	イトイガワ		37.0	137.9	10	5740		カイバラ		35.1	135.0	95
5140 能生	ノウ		37.1	138.0	55	5750		イチノミヤ		35.1	134.6	195
5150 関山	セキヤマ		36.9	138.2	350	5760		フクサキ		35.0	134.7	72
5160 津南	ツナン		37.0	138.7	452	5770		ニシワキ		35.0	135.0	72
5170 湯沢 5180 泊	ユザワ トマリ	富山県	36.9 37.0	138.8 137.6	340 13	5780 5790		カミゴオリ ヒメジ		34.9 34.8	134.4 134.7	20 38
5100 冶	とき	画山宗	36.9	137.0	7	5800		サンダ		34.9	135.2	150
5200 魚津	ウオヅ		36.8	137.4	48	5810		557 5 +		34.8	135.2	145
5210 伏木	フシキ		36.8	137.1	12	5820		イエシマ		34.7	134.5	88
5220 富山	トヤマ		36.7	137.1	9	5830		アカシ		34.7	134.9	3
5230 砺波	トナミ		36.6	137.0	69	5840		コウベ			135.2	5
5240 上市	カミイチ		36.7	137.4	296	5850		グンゲ		34.5	134.8	5
5250 南砺高宮	ナントタカミヤ		36.5	136.9	91	5860		スモト		34.3	134.9	109
5260 八尾	ヤツオ		36.6	137.1	78	5870		ナンダン		34.2	134.7	5
5270 珠洲	スズ	石川県	37.4	137.3	4	5880	奈良	ナラ	奈良県	34.7	135.8	104
5280 輪島	ワジマ		37.4	136.9	5	5890	針	ハリ		34.6	136.0	468
5290 志賀	シカ		37.1	136.7	6	5900	大宇陀	オオウダ		34.5	135.9	349
5300 七尾	ナナオ		37.0	137.0	14	5910		ゴジョウ		34.4	135.7	190
5310 羽咋	ハクイ		36.9	136.8	15		上北山	カミキタヤマ		34.1	136.0	334
5320 かほく	カホク		36.7	136.7	42	5930		カゼヤ		34.0	135.8	301
5330 金沢	カナザワ		36.6	136.6	6		かつらぎ	カツラギ	和歌山県	34.3	135.5	142
5340 小松	コマツ		36.4	136.4	3		和歌山	ワカヤマ		34.2	135.2	14
5350 白山吉野	ハクサンヨシノ		36.4	136.6	180		高野山	コウヤサン			135.6	795
5360 加賀山中	カガヤマナカ		36.2	136.4	126	5970		シミズ		34.1	135.4	240
5370 三国	ミクニ	福井県	36.2	136.1	80	5980		リュウジン		33.9	135.6	410
5380 越廼	コシノ		36.0	136.0	30	5990		カワベ		33.9	135.2	160
5390 福井 5400 勝山	フクイ カッセマ		36.1 36.0	136.2	9 196	6000	栗栖川	クリスガワ		33.8	135.5	160
5400 勝山	カツヤマ		36.0	136.5	196							

EA気象データの地点 No.6

5010 함품 シグツ 和歌山東 33.7 136.0 18 6610 함께 ブイ 카지오 35.1 134.2 133.2 3600 위에 ジカツ 34.6 135.7 150 6620 호텔 수부 35.1 134.2 25.6 6640 지배 ブナブキ 34.0 133.8 43.0 6650 라트 수후 34.1 134.6 6660 다필 수후 34.1 134.6 6600 다필 수후 34.1 134.6 6600 다필 수후 34.1 134.6 6600 다필 수후 34.1 134.6 6700 다필 수후 47.1	地点 番号	地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]	地点番号		地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]
5020 白呂片 シカバマ 33.7 15.3 322 56.20 差層 サヤ 35.2 133.2 133.6 133.6 133.6 134.6		ミハガウ	和勁山間					知品	エブ	自而但			182
6930 현비			和歌山宗							后以朱			490
6900 角脚 2月大学 33.5 15.8 73 6640 穴次 77.4 34.0 134.6 6650 産品 75.7 34.1 134.6 6650 産品 75.7 34.8 134.7 34.6 6650 産品 75.7 34.8 134.7 34.6 6650 産品 75.7 34.8 134.7 34.6 6650 成品 75.7 34.8 134.7 34.6 6650 成品 75.7 34.8 134.7 34.6 6650 成品 75.7 34.8 134.2 21.0 34.6 134.3 34.7 34.6 6650 成品 25.7 34.8 134.2 34.6 6650 成品 25.7 34.8 134.3 34.8 6450 成品 25.7 34.8 134.2 34.8 34.8 34.2 34.8 34.2 34.8 34.8 34.2 34.8 34.2 34.8 34.8 34.2 34.8 34.8 34.2 34.8 34.8 34.2 34.8										徳島坦			205
6950 上岳田 カデナタ 前山川 35.3 133.7 430 6550 常品 ヤクシマ 33.4 134.6 13660 で										шиших			160
6960 千屋 チヤ 55.1 133.4 225 6660 系上 479次7 33.9 133.9 133.9 133.9 (6707 森蚕 7 オイ 55.1 134.3 207 6680 水雪 ボヤウ 33.8 134.2 126 6670 離田 がじり 33.8 134.2 126 6670 離田 がじり 33.8 134.2 13.0 6709 入世 7 2 35.1 134.3 207 6680 水雪 キヤウ 33.8 134.2 13.3 13.2 13.2 13.2 13.2 13.2 13.2 13			岡山県										2
6080 今 イオカ													560
6990 大田	6070 奈義	ナギ		35.1	134.2		6670	蒲生田			33.8	134.7	10
6100 中で	6080 今岡	イマオカ		35.1	134.3	207	6680	木頭	キトウ		33.8	134.2	330
6110 照 一	6090 久世	クセ		35.1	133.8	145	6690	日和佐	ヒワサ		33.7	134.5	3
6120 総原				35.1	134.0	146	6700	宍喰	シシクイ		33.6	134.3	4
6130 紀末	6110 新見	ニイミ		34.9	133.5	393	6710	内海	ウチノミ	香川県	34.5	134.3	20
6140 高別													9
6150 周川 対わマ 34.7 134.9 34.7 134.9 134.6 1610 日明													4
6160 世帯 人シアザ 34.6 133.8 34.5 133.5 6770 大三島													60
6170 食骸 クラシキ 34.6 133.8 3 6770 大三扇 オキシマ 愛媛県 34.2 133.0 6180 笠岡 カサガカ 34.5 133.5 0 6780 今治 イマパリ 34.1 133.0 133.0 133.0 133.9 37.0 133.9 133.1 133.0 133.9 37.0 133.9 37.0 133.9 133.1 133.0 133.													12
6180 笠岡 対サオ													65
6190										変媛県			2
6200 高野 外か 広島県 35.0 132.9 570 6800 新居浜 二パマ 34.0 133.3 6210 三次 33.9 34.8 132.9 159 6810 三島 ミンマ 34.0 133.6 132.8 6230 大柳 大村かり 34.8 132.5 385 6820 松山 マツヤマ 33.8 132.8 6230 大柳 大村かり 34.8 132.3 510 6840 久万 夕マ 33.7 132.9 6250 旅計 かか 34.6 132.3 510 6840 久万 夕マ 33.7 132.9 6250 旅計 かか 34.6 132.3 510 6850 大柳 大村木 33.5 132.5 6260 三入 ミイリ 34.5 132.5 70 6850 旅戸 セト 33.4 132.3 132.6 6260 三入 ミイリ 34.6 133.2 70 6850 旅戸 セト 33.4 132.5 6280 府中 アナウ 34.4 133.2 70 6880 宋和 ワワ 33.4 132.5 6280 府中 アナウ 34.4 133.2 70 6880 宋和 ワワマ 33.4 132.5 6300 旅山 フウヤマ 34.4 133.2 2 6900 銀柱 ミショウ 33.0 132.6 6310 廿日中津田 八ツイデッ 34.4 132.2 317 6910 太川 大ガウ 33.8 133.3 132.6 6330 大田中津田 八ツイデッ 34.4 133.2 132.5 6930 水井 大ガウ 33.6 133.5 6330 大田中津田 八ツイデッ 34.3 133.0 5 6930 大田 大ガウ 33.6 133.5 6330 大田中津田 八ツイデマ 34.3 133.2 17 6940 旅日 フクチ 33.6 133.5 6330 大田中津田 八ツイデマ 34.2 132.6 4 6950 安豊 アキ 33.5 133.6 6360 日上マ 34.2 132.6 4 6950 安豊 アオ 33.6 133.5 6330 大田中津田 八ツイ 34.2 132.8 4 6970 塚門 スレリー 34.2 132.8 4 6970 塚門 スレリー 34.2 133.1 3 6990 塚川 大田中津田 八ツイ 33.1 133.1 3 6990 塚川 大田中津田 八ツイ 34.4 133.3 33.2 132.6 4 6970 塚門 スレリー 34.2 133.1 3 6990 塚川 大田中津田 八野中 33.1 133.1 3 6990 塚川 大田中津田 八野中 34.4 133.3 33.0 5 6980 塚川 大田中 34.4 133.3 33.0 5 6980 塚川 大田中 34.4 133.3 33.0 5 7000 塚川 大田中 34.4 133.3 33.3 33.0 33.0 33.0 33.0 33.5 33.3 33.0 3													2 13
6210 三次			広阜旧										6
6220 庄原 ショッパラ 34.9 133.0 300 6820 松山 マッヤマ 33.8 132.8 6230 大樹 オオアサ 34.8 132.5 385 6830 長浜 ナガハマ 33.6 132.5 6240 油木 ユキ 34.8 133.3 510 6840 久万 クマ 33.7 132.9 6250 加計 かケ 34.6 132.3 210 6850 大洲 オオズ 33.5 132.5 6260 三入 ミイリ 34.6 132.3 210 6850 大洲 オオズ 33.4 132.5 6260 三入 ミイリ 34.6 133.1 330 6850 大洲 オオズ 33.4 132.5 6280 府中 ブチュウ 34.6 133.1 330 6890 運用 ウラマ 33.4 132.5 6280 府中 ブチュウ 34.6 133.2 70 6880 瀬戸 セト 33.4 132.5 6290 東広島 ヒガシヒロシマ 34.4 132.2 22 6890 近永 チカナガ 33.3 132.6 6300 福山 フッヤマ 34.4 132.2 317 6910 本川 たッガウ 高規県 33.8 133.3 132.6 6300 福山 フッヤマ 34.4 132.2 317 6910 本川 たッガウ 高規県 33.8 133.3 132.6 6300 福山 フットマ 34.4 132.5 4 6920 本山 モトヤマ 33.8 133.3 133.6 133.6 133.5 6300 福山 フットマ 34.4 132.5 14 6920 本山 モトヤマ 33.8 133.3 133.0 5 6930 大栃 オオギチ 33.7 133.9 7 6940 高別 コッチ 33.6 133.5 6300 円 フットマ 34.2 132.6 4 6950 変費 ブメン 33.6 133.5 6350 大竹 オオタケ 34.2 132.6 4 6950 変費 アキ 33.5 133.5 6350 大竹 オオタケ 34.2 132.6 4 6950 変費 アキ 33.5 133.5 6330 円か アマ 34.1 132.1 3 6990 運川 グホカワ 33.4 132.9 6400 鹿島 サイブゥ 島根県 36.2 133.1 3 6990 運川 グホカワ 33.4 132.9 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.8 4 6970 梅原 ユルラ 33.4 132.9 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.7 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.7 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.7 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.7 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.7 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.7 6400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 33.2 132.7 6400 鹿島 フター 35.2 132.5 15 7030 商モ フタモ 34.9 132.7 6400 廃島 カシマ 35.5 133.1 17 7010 江川崎 ブカワキ 34.4 131.6 6430 八井 オター 35.2 132.5			/ 山西木										27
6230 大師													32
6240 油木 고부 34.8 133.3 510 6840 久万													4
6250 加計													511
6270 世羅													17
6280 府中 アチュウ 34.6 133.2 70 6880 宇和島 979ド 33.2 132.6 6290 東広島 ヒガシヒロシマ 34.4 132.7 224 6890 近永 チカナブ 33.3 132.7 16300 福山 アクヤマ 34.4 132.2 2 6900 御田 ミショウ 33.0 132.6 6310 廿日市津田 ハツカイチツタ 34.4 132.2 317 6910 本川 ホンカフ 高知県 33.8 133.3 132.6 16320 広島 ヒロシマ 34.4 132.5 4 6920 本山 モトヤマ 33.8 133.6 16330 竹原 タケハラ 34.3 133.0 5 6930 大栃 オオドチ 33.8 133.6 16340 田島 イングマ 34.3 133.2 17 6940 高知 フクチ 33.6 133.5 6340 田島 イングマ 34.3 133.2 17 6940 高知 フクチ 33.6 133.5 6350 大竹 オオタケ 34.2 132.6 4 6960 変芸 アキ 33.5 133.9 6370 人大 グビ 34.2 132.8 4 6990 破策 フグナ 33.4 133.9 6370 海ボ グド グビ 34.2 132.8 4 6990 破策 ユズリラ 33.4 133.1 3 6390 瀬士 アマ 36.1 133.1 3 6990 雇川 グボカク 33.2 133.1 16400 鹿島 カシマ 35.5 133.0 5 7000 室戸岬 ムロトミサキ 33.3 134.2 6410 松江 マツエ 35.5 133.1 17 7010 江川崎 エカツサキ 33.2 132.7 6440 田舎 カシマ 35.5 132.5 132.5 15 7030 宿毛 スクモ 32.9 132.7 6440 田舎 カウヤ 35.2 132.8 12.8 215 7040 中村 ナカムラ 33.0 132.7 6400 横田 3コク 35.2 132.5 132.5 15 7030 宿毛 スクモ 32.9 132.7 6400 横田 3コク 35.2 132.5 132.5 15 7030 宿毛 スクモ 32.9 132.7 6400 横田 3コク 35.2 132.5 132.8 215 7040 中村 ナカムラ 33.0 132.7 6400 横田 3コク 35.2 132.5 132.5 132.6 132.6 132.7 6400 中村 ナカムラ 33.0 132.7 6400 横田 3コク 35.2 132.5 132.5 7000 変产岬 カカムラ 33.0 132.7 6400 横田 3コク 35.2 132.5 132.5 7000 変产岬 カカムラ 33.0 132.7 6400 横田 3コク 35.2 132.5 132.5 15 7030 宿毛 スクモ 32.9 132.7 6400 横田 3コク 35.2 132.5 132.8 215 7040 中村 ナカムラ 33.0 132.7 6400 横田 3コク 35.2 132.5 132.5 7070 変 ルド カカムラ 34.0 132.7 6400 瀬田 バマダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.6 6400 飛田 バマダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.6 6400 飛田 バマダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.6 6510 益田 マズダ 34.7 131.8 4 7110 広崎 77 7000 秋日台 アキヨジグ 34.2 131.5 6510 益田 マズダ 34.7 131.8 165 7120 豊田 トヨク 34.2 131.5 6550 青春 アオヤ 34.4 131.9 31.6 6550 下市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6550 青春 アオヤ 747 35.6 134.4 19 7170 以田 797 34.0 131.5 6550 青春 アオヤ 747 35.6 134.4 19 7170 以田 797 34.0 131.5 6550 青春 774 774 35.6 134.4 19 7170 以田 797 34.0 131.5 6580 米子 371 7050 ボー 771 771 771 771 771 771 771 771 771 77	6260 三入	ミイリ		34.5	132.5	70	6860	瀬戸	セト		33.4	132.3	143
6290 東広島	6270 世羅	セラ		34.6	133.1	330	6870	宇和	ウワ		33.4	132.5	208
6300 福山	6280 府中	フチュウ		34.6	133.2	70	6880	宇和島	ウワジマ		33.2	132.6	2
6310 廿日市津田 ハッカイチッタ 34.4 132.2 31.7 6910 本川 ホンガワ 高知県 33.8 133.3 133.0 133.0 133.0 15.5 133.0 133.0 15.5 133.0 133.0 133.0 15.5 133.0 133.0 15.5 133.0 15.5 133.0 133.0 133.0 15.5 133.0 15.5 133.0 15.5 133.0 15.5 133.0 15.5 133.0 15.5 133.0 133.5 13	6290 東広島	ヒガシヒロシマ		34.4	132.7	224	6890	近永	チカナガ		33.3	132.7	129
6320 広島 ヒロシマ 34.4 132.5 4 6920 本山 モトヤマ 33.8 133.6 2 6330 竹原 かり/り 34.3 133.0 5 6930 大栃 オオドチ 33.7 133.9 133.5 6340 因島 インノシマ 34.3 133.2 17 6940 高知 コヴチ 33.6 133.5 6350 大竹 オオかか 34.2 132.2 1 6950 後免 ゴメン 33.6 133.6 6360 県 クレ 34.2 132.8 4 6960 安芸 アキ 33.5 133.9 6370 久比 グビ 34.2 132.8 4 6970 樹原 ユスリラ 33.4 132.9 4 6390 海世 アマ 36.1 133.1 3 6990 窪川 グボカワ 33.2 133.1 1 6400 鹿島 カシマ 35.5 133.0 5 7000 室戸岬 ムロトミサキ 33.3 134.2 132.8 6410 松江 マツエ 35.5 133.1 17 7010 江川崎 エカワサキ 33.2 132.8 6410 松江 マツエ 35.5 133.1 17 7010 江川崎 エカワサキ 33.2 132.8 6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 133.1 1 6400 推島 カケヤ 35.2 132.5 15 7030 宿モ スクモ 32.9 132.7 6400 横日 コウ 35.2 132.5 15 7030 宿モ スクモ 32.9 132.7 6400 横日 コウ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 コウ 35.2 132.5 15 7040 中村 ナカムラ 33.0 132.9 6450 横田 コウ 35.2 132.5 1444 7060 海佐 スケモ 32.9 132.7 133.0 6400 赤名 アカナ 35.0 132.5 132 7070 萩 八年 34.4 131.4 6480 浜田 ハマダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.0 6490 瑞穂 ミズホ 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.0 6490 瑞穂 ミズホ 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.0 6500 沖保 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシダイ 34.2 131.3 6500 六日市 ムイカイチ 高4.4 131.8 165 7120 豊田 トヨタ 34.2 131.3 6500 六日市 ムイカイチ 高4.4 131.9 311 7100 山口 ヤマグチ 34.2 131.3 6500 六日市 ムイカイチ 高4.4 131.9 311 7100 山口 ヤマグチ 34.2 131.3 6500 六日市 ムイカイチ 高4.4 131.9 311 7100 山口 ヤマグチ 34.2 131.3 6500 六日市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 747 35.5 134.0 7 7160 下札 クダマツ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 747 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6500 青谷 アオヤ 747 35.5 133.6 6 7180 下間 25七々キ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 747 34.0 132.1		フクヤマ		34.4									12
6330 竹原 タケバラ 34.3 133.0 5 6930 大栃 オポドチ 33.7 133.9 26340 因島 イングマ 34.3 133.2 17 6940 高知 コヴチ 33.6 133.5 133.6 6350 大竹 オオタケ 34.2 132.2 1 6950 後免 ゴメン 33.6 133.5 133.9 6360 県 クレ 34.2 132.8 4 6960 安差 アキ 33.5 133.9 6370 久比 グビ 34.2 132.8 4 6970 梼原 ユズバラ 33.4 132.9 6370 久比 グビ 34.2 133.1 3 6990 運川 グボカワ 33.2 133.1 133.1 3 6990 運川 グボカワ 33.2 133.1 3 6990 運川 グボカワ 33.2 133.1 133.1 3 6990 運川 グボカワ 33.2 133.1 17 7010 江川崎 エカプサキ 33.3 134.2 132.8 6410 松江 マツエ 35.5 133.0 5 7000 室戸岬 ムロトミサキ 33.3 134.2 132.8 6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 133.1 133.1 6430 大田 オオダ 35.2 132.5 15 7030 宿モ スクモ 32.9 132.7 6440 掛合 カケヤ 35.2 132.8 155 7030 宿モ スクモ 32.9 132.7 6440 掛合 カケヤ 35.2 132.5 15 7030 宿モ スクモ 32.9 132.7 6440 掛合 カケヤ 35.2 132.5 15 7030 宿モ スクモ 32.9 132.7 6440 掛合 カケト 35.2 132.5 133.1 369 7050 海水 シミズ 32.7 133.0 132.9 6450 検囲 コフタ 35.2 133.1 369 7050 海水 シミズ 32.7 133.0 132.9 6450 検囲 コアタ 35.2 133.1 369 7050 海水 シミズ 32.7 133.0 132.9 6450 検囲 コアタ 35.2 133.1 369 7050 海水 シミズ 32.7 133.0 132.9 6500 弥栄 ヤサカ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.4 6480 浜田 バマヴ 34.9 132.5 132 7070 萩 バギ 34.4 131.0 6590 海岸 シゲナ 34.4 131.7 16500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシヴィ 34.4 131.7 16500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシヴィ 34.2 131.3 16510 益田 マズダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.5 1650 六日市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 13 13.6 13 13.0 132.1										高知県			560
6340 因鳥 イングマ 34.3 133.2 17 6940 高知 コウチ 33.6 133.5 6350 大竹 オオタケ 34.2 132.2 1 6950 後免 ゴメン 33.6 133.6 6360 具 クレ 34.2 132.6 4 6960 安芸 アキ 33.5 133.9 6370 入比 クビ 34.2 132.8 4 6970 梼原 ユズバラ 33.4 132.9 6380 西郷 サイゴウ 島根県 36.2 133.3 27 6980 須崎 ズサキ 33.4 132.9 6400 鹿島 カシマ 36.1 133.1 3 6990 窪川 クボホワ 33.2 133.1 26400 鹿島 カシマ 35.5 133.0 5 7000 室戸岬 ムロトジサキ 33.2 133.1 26400 鹿島 カシマ 35.5 133.1 17 7010 江川崎 エカワサキ 33.2 132.8 6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 133.1 6430 大田 オオダ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 ヨコタ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 ヨコタ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 コフタ 35.0 132.7 444 7060 須佐 ズサ 山口県 34.6 131.6 6470 川本 カワモト 35.0 132.7 444 7060 須佐 ズサ 山口県 34.6 131.6 6470 川本 カワモト 35.0 132.1 19 7080 油合 ユヤ 34.4 131.0 6480 浜田 バズダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.0 6490 端穂 ミズ木 34.9 132.1 19 7080 油合 ユヤ 34.4 131.0 6500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキョシダイ 34.2 131.3 6510 益田 マズダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トラタ 34.2 131.1 6530 六日市 ムイカイチ 鳥取県 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6550 青台 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6550 青台 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6580 米子 ヨナゴ 35.4 133.3 6 7100 柳井 ヤナイ 34.0 131.9 6550 青台 アカマ 35.4 133.3 6 7100 柳井 ヤナイ 34.0 131.9 6550 青台 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青台 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青台 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青台 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青台 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青台 アオヤ 74 74 35.5 134.0 7 7 7160 下松 クダマツ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 圦町 7ガ 34.0 131.5 6560 青台 アオヤ 74 74 35.5 133.8 6 7160 下間 シモナヒキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													252
6350 大竹 オオタケ 34.2 132.2 1 6950 後免													210
6360 日本語の													1
6370 久比													12 6
6380 西郷 サイゴウ 島根県 36.2 133.3 27 6980 須崎 スサキ 33.4 133.3 133.4 133.3 6390 海土 アマ 36.1 133.1 3 6990 窪川 グボカワ 33.2 133.1 1 6400 鹿島 カシマ 35.5 133.0 5 7000 室戸岬 ムロトミサキ 33.3 134.2 6410 松江 マツエ 35.5 133.1 17 7010 江川崎 エカプサキ 33.2 132.8 6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 133.1 133.1 6430 大田 オオダ 35.2 132.5 15 7030 宿毛 スクモ 32.9 132.7 6440 掛合 カケヤ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 ヨコタ 35.2 133.1 369 7050 清水 シミズ 32.7 133.0 6460 赤名 アカナ 35.0 132.7 444 7060 須佐 スサ 山口県 34.6 131.6 6470 川本 カフ干ト 35.0 132.5 132 7070 萩 八ギ 34.4 131.4 6480 浜田 八マダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.0 6500 弥栄 ヤサカ 34.8 132.1 380 7100 秋舌台 アキヨシダイ 34.2 131.3 6510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 131.5 6560 青谷 アオヤ 35.5 134.0 7 7 7160 下松 7ヴマツ 34.0 131.5 6560 青谷 アオヤ 35.5 134.0 7 7 7160 下松 7ヴマツ 34.0 131.5 6560 青谷 アオヤ 35.5 134.0 7 7 7160 下松 7ヴマツ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 7ガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 75ヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													415
6390 海士 アマ 36.1 133.1 3 6990 窪川 ケボカワ 33.2 133.1 6400 鹿島 カシマ 35.5 133.0 5 7000 室戸岬 ムロトミサキ 33.3 134.2 152.8 6410 松江 マツエ 35.5 133.1 17 7010 江川崎 エカワサキ 33.2 132.8 6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 133.1 133.1 6430 大田 オオダ 35.2 132.5 15 7030 宿毛 スクモ 32.9 132.7 6440 掛合 カケヤ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 ヨコタ 35.2 133.1 369 7050 清水 シミズ 32.7 133.0 132.9 6460 赤名 アカナ 35.0 132.7 444 7060 須佐 スサ 山口県 34.6 131.6 6470 川本 カワモト 35.0 132.5 132 7070 萩 ハギ 34.4 131.4 6480 浜田 ハマダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.7 16500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキョシダイ 34.2 131.3 16510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 131.5 6560 青谷 アオヤ 35.5 134.0 7 7160 下松 クグマツ 34.0 131.9 6570 岩井 イワイ 35.5 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1			皇根 旦										4
6400 鹿島 カシマ 35.5 133.0 5 7000 室戸岬 ムロトミサキ 33.3 134.2 16410 松江 マツエ 35.5 133.1 17 7010 江川崎 エカワサキ 33.2 132.8 6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 1			шлил										205
6410 松江 マツエ 35.5 133.1 17 7010 江川崎 エカワサキ 33.2 132.8 6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 133.1 133.1 6430 大田 オ材ダ 35.2 132.5 15 7030 宿毛 スクモ 32.9 132.7 6440 掛合 カケヤ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 ヨコタ 35.2 133.1 369 7050 清水 シミズ 32.7 133.0 6460 赤名 アカナ 35.0 132.7 444 7060 須佐 スサ 山口県 34.6 131.6 6470 川本 カアモト 35.0 132.5 132 7070 萩 ハギ 34.4 131.4 6480 浜田 ハマダ 34.9 132.1 19 7080 油合 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.7 56500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシダイ 34.2 131.3 16510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													185
6420 出雲 イズモ 35.3 132.7 20 7020 佐賀 サガ 33.1 133.1 133.1 16430 大田 オオダ 35.2 132.5 15 7030 宿毛 スクモ 32.9 132.7 6440 掛合 かケヤ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 ヨコタ 35.2 133.1 369 7050 清水 シミズ 32.7 133.0 6460 赤名 アカナ 35.0 132.7 444 7060 須佐 スサ 山口県 34.6 131.6 6470 川本 カワモト 35.0 132.5 132 7070 萩 八ギ 34.4 131.4 6480 浜田 八マダ 34.9 132.1 19 7080 油谷 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.7 5650 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシダイ 34.2 131.3 6510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 131.5 6560 青谷 アオヤ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6570 岩井 イワイ 35.6 134.4 19 7170 坎珂 グガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													60
6430 大田 オオダ 35.2 132.5 15 7030 宿毛 スクモ 32.9 132.7 6440 掛合 かかヤ 35.2 132.8 215 7040 中村 ナカムラ 33.0 132.9 6450 横田 ヨコタ 35.2 133.1 369 7050 清水 シミズ 32.7 133.0 6460 赤名 アカナ 35.0 132.7 444 7060 須佐 スサ 山口県 34.6 131.6 6470 川本 カワモト 35.0 132.5 132 7070 萩 ハギ 34.4 131.4 6480 浜田 ハマダ 34.9 132.1 19 7080 油谷 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.7 5500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシダイ 34.2 131.3 6510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 132.2 6550 下市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													3
6450 横田 ヨコタ 35.2 133.1 369 7050 清水 シミズ 32.7 133.0 6460 赤名 アカナ 35.0 132.7 444 7060 須佐 スサ 山口県 34.6 131.6 6470 川本 カワモト 35.0 132.5 132 7070 萩 八ギ 34.4 131.4 6480 浜田 ハマダ 34.9 132.1 19 7080 油谷 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.7 6500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシダイ 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.1 34.2 131.1 34.2 131.1 34.2 131.1 34.2 131.5 34.2 131.5 34.2						15					32.9		2
6460 赤名 アカナ 35.0 132.7 444 7060 須佐 スサ 山口県 34.6 131.6 6470 川本 カワモト 35.0 132.5 132 7070 萩 八ギ 34.4 131.4 6480 浜田 ハマダ 34.9 132.1 19 7080 油谷 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.7 34.6 131.7 34.7 131.8 4 7100 秋吉台 アキヨシダイ 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.1 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3 34.2 131.3	6440 掛合	カケヤ		35.2	132.8	215	7040	中村	ナカムラ		33.0	132.9	8
6470 川本 カワモト 35.0 132.5 132 7070 萩 八ギ 34.4 131.4 6480 浜田 ハマダ 34.9 132.1 19 7080 油谷 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.7 34.6 131.7 34.2 131.3 34.2 131.1 34.2 131.1 34.2 131.1 34.2 131.1 34.2 131.1 34.2 131.1 34.2 131.1 34.2 131.5 34.2 131.5 34.2 131.5 34.2 131.5 34.2 131.5 34.2 131.5 34.2 131.5 <td>6450 横田</td> <td>379</td> <td></td> <td>35.2</td> <td>133.1</td> <td>369</td> <td>7050</td> <td>清水</td> <td>シミズ</td> <td></td> <td>32.7</td> <td>133.0</td> <td>31</td>	6450 横田	379		35.2	133.1	369	7050	清水	シミズ		32.7	133.0	31
6480 浜田 ハマダ 34.9 132.1 19 7080 油谷 ユヤ 34.4 131.0 6490 瑞穂 ミズ木 34.9 132.5 327 7090 徳佐 トクサ 34.4 131.7 56500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシダイ 34.2 131.3 56510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 132.2 6550 下市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 134.0 7 7160 下松 クダマツ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1	6460 赤名	アカナ		35.0	132.7	444	7060	須佐	スサ	山口県	34.6	131.6	50
6490 瑞穂				35.0	132.5	132	7070	萩	ハギ		34.4	131.4	6
6500 弥栄 ヤサカ 34.8 132.1 380 7100 秋吉台 アキヨシダイ 34.2 131.3 2.0 6510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 7130 山口 ヤマグチ 34.2 131.5 131.5 7130 山口 ヤマグチ 34.2 131.5 131.5 131.5 7140 岩国 イワクニ 34.2 132.2 <td></td> <td>8</td>													8
6510 益田 マスダ 34.7 131.8 4 7110 広瀬 ヒロセ 34.3 132.0 6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 132.2 6550 下市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 グラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													310
6520 津和野 ツワノ 34.5 131.8 165 7120 豊田 トヨタ 34.2 131.1 6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 132.2 6550 下市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 134.0 7 7160 下松 クダマツ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													240
6530 六日市 ムイカイチ 34.4 131.9 311 7130 山口 ヤマグチ 34.2 131.5 6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 132.2 6550 下市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 134.0 7 7160 下松 クダマツ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													97
6540 境 サカイ 鳥取県 35.5 133.2 2 7140 岩国 イワクニ 34.2 132.2 6550 下市 シモイチ 35.5 133.6 15 7150 防府 ホウフ 34.0 131.5 6560 青谷 アオヤ 35.5 134.0 7 7160 下松 クダマツ 34.0 131.9 6570 岩井 イワイ 35.6 134.4 19 7170 玖珂 クガ 34.1 132.1 6580 米子 ヨナゴ 35.4 133.3 6 7180 下関 シモノセキ 33.9 130.9 6590 倉吉 クラヨシ 35.5 133.8 8 7190 柳井 ヤナイ 34.0 132.1													40
6550 下市シモイチ35.5133.6157150 防府ホウフ34.0131.56560 青谷アオヤ35.5134.077160 下松クダマツ34.0131.96570 岩井イワイ35.6134.4197170 玖珂クガ34.1132.16580 米子ヨナゴ35.4133.367180 下関シモノセキ33.9130.96590 倉吉クラヨシ35.5133.887190 柳井ヤナイ34.0132.1			色取旧										17 70
6560 青谷アオヤ35.5134.077160 下松クダマツ34.0131.96570 岩井イワイ35.6134.4197170 玖珂クガ34.1132.16580 米子ヨナゴ35.4133.367180 下関シモノセキ33.9130.96590 倉吉クラヨシ35.5133.887190 柳井ヤナイ34.0132.1			后 以宗										70 6
6570 岩井イワイ35.6134.4197170 玖珂クガ34.1132.16580 米子ヨナゴ35.4133.367180 下関シモノセキ33.9130.96590 倉吉クラヨシ35.5133.887190 柳井ヤナイ34.0132.1													6 52
6580 米子ヨナゴ35.4133.367180 下関シモ/セキ33.9130.96590 倉吉クラヨシ35.5133.887190 柳井ヤナイ34.0132.1													52 68
6590 倉吉クラヨシ35.5133.887190 柳井ヤナイ34.0132.1													3
													3
6600 鳥取 トットリ 35.5 134.2 7 7200 安下庄 アゲノショウ 33.9 132.3	6600 鳥取	トットリ							アゲノショウ				5

EA気象データの地点 No.7

 地点 番号	地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]	—————————————————————————————————————			地名	都道府県名	緯度 [°]	経度 [°]	標高 [m]
7210 宗像	ムナカタ	福岡県	33.8	130.5	7	78:		上	ウエ	熊本県	32.2	130.9	166
7220 八幡	ヤハタ		33.9	130.7	20	782	20	牛深	ウシブカ		32.2	130.0	3
7230 行橋	ユクハシ		33.7	131.0	7	783	30	高千穂	タカチホ	宮崎県	32.7	131.3	350
7240 飯塚	イイヅカ		33.7	130.7	37	784	10	古江	フルエ		32.7	131.8	4
7250 前原	マエバル		33.6	130.2	2	785	50	鞍岡	クラオカ		32.6	131.2	590
7260 福岡	フクオカ		33.6	130.4	3	786	50	延岡	ノベオカ		32.6	131.7	19
7270 太宰府	ダザイフ		33.5	130.5	27	787	70	日向	ヒュウガ		32.4	131.6	20
7280 添田	ソエダ		33.6	130.9	120	788	30	神門	ミカド		32.4	131.3	250
7290 甘木	アマギ		33.4	130.7	36			西米良	ニシメラ		32.2	131.2	250
7300 久留米	クルメ		33.3	130.5	7			高鍋	タカナベ		32.1	131.5	4
7310 黒木	クロギ		33.2	130.6	144			加久藤	カクトウ		32.0	130.8	228
7320 大牟田	オオムタ		33.0	130.5	31			西都	サイト		32.1	131.4	11
7330 国見	クニミ	大分県	33.7	131.6	14			小林	コバヤシ		32.0	131.0	276
7340 中津	ナカツ		33.6	131.2	11			宮崎	ミヤザキ		31.9	131.4	9
7350 豊後高田	ブンゴタカダ		33.6	131.4	5			青島	アオシマ		31.8	131.5	8
7360 院内 7370 杵築	インナイ		33.4	131.3	90			都城 油津	ミヤコノジョウ アブラツ		31.7	131.1	154
7370 行業 7380 日田	キツキ ヒタ		33.4 33.3	131.6 130.9	20 83			串間	クシマ		31.6 31.5	131.4 131.2	3 20
7390 玖珠	クス		33.3	131.2	346			阿久根	アクネ	鹿児島県	32.0	130.2	40
7400 湯布院	ユフイン		33.3	131.3	435			大口	オオクチ	此儿西木	32.0	130.2	175
7410 大分	オオイタ		33.2	131.6	5			さつま柏原	サツマカシワバル		31.9	130.5	59
7420 犬飼	イヌカイ		33.1	131.6	100			中甑	ナカコシキ		31.8	129.9	10
7430 竹田	タケタ		33.0	131.4	290			川内	センダイ		31.8	130.3	5
7440 佐伯	サイキ		33.0	131.9	2			東市来	ヒガシイチキ		31.7	130.3	40
7450 宇目	ウメ		32.8	131.7	200			牧之原	マキノハラ		31.7	130.9	384
7460 蒲江	カマエ		32.8	131.9	2			鹿児島	カゴシマ		31.6	130.5	4
7470 鰐浦	ワニウラ	長崎県	34.7	129.4	63			輝北	キホク		31.6	130.9	360
7480 厳原	イヅハラ		34.2	129.3	4	808	30	加世田	カセダ		31.4	130.3	9
7490 芦辺	アシベ		33.8	129.7	97	809	90	志布志	シブシ		31.5	131.1	70
7500 平戸	ヒラド		33.4	129.6	58	810	00	喜入	キイレ		31.4	130.5	4
7510 松浦	マツウラ		33.4	129.8	5	813	LO	鹿屋	カノヤ		31.4	130.9	80
7520 佐世保	サセボ		33.2	129.7	4			肝付前田	キモツキマエダ		31.3	130.9	31
7530 有川	アリカワ		33.0	129.1	11			枕崎	マクラザキ		31.3	130.3	30
7540 大瀬戸	オオセト		32.9	129.6	43			指宿	イブスキ		31.2	130.6	5
7550 長崎	ナガサキ		32.7	129.9	27			内之浦	ウチノウラ		31.3	131.1	3
7560 雲仙岳	ウンゼンダケ		32.7	130.3	678			田代	タシロ		31.2	130.8	182
7570 島原	シマバラ		32.8	130.4 128.8	17 25			種子島	タネガシマ		30.7	131.0	25
7580 福江 7590 口之津	フクエ クチノツ		32.7 32.6	130.2	25 10			上中 屋久島	カミナカ ヤクシマ		30.4 30.4	130.9 130.7	150 37
7600 野母崎	ノモザキ		32.6	129.7	190			産へ島 尾之間	オノアイダ		30.4	130.7	60
7610 枝去木	エザルギ	佐賀県	33.5	129.9	110			名瀬	ナゼ		28.4	129.5	3
7620 伊万里	イマリ	HAN.	33.3	129.9	25			古仁屋	コニヤ		28.1	129.3	2
7630 佐賀	サガ			130.3	6			伊仙	イセン		27.7	129.0	44
7640 嬉野	ウレシノ			130.0	81			沖永良部	オキノエラブ		27.4	128.7	27
7650 白石	シロイシ		33.2	130.1	4			伊是名	イゼナ	沖縄県	26.9	127.9	45
7660 鹿北	カホク	熊本県	33.1	130.7	119	826	50	奥	オク		26.8	128.3	232
7670 南小国	ミナミオグニ		33.1	131.1	440	827	70	名護	ナゴ		26.6	128.0	6
7680 岱明	タイメイ		32.9	130.5	15	828	30	金武	キン		26.5	127.9	8
7690 菊池	キクチ		32.9	130.8	83	829	90	久米島	クメジマ		26.3	126.8	4
7700 阿蘇乙姫	アソオトヒメ		32.9	131.0	497			渡嘉敷	トカシキ		26.2	127.4	220
7710 熊本	クマモト		32.8	130.7	38			那覇	ナハ		26.2	127.7	28
7720 阿蘇山	アソサン		32.9	131.1	1142			糸数	イトカズ		26.2	127.8	186
7730 高森	タカモリ		32.8	131.1	551			南大東	ミナミダイトウ			131.2	15
7740 三角	ミスミ		32.6	130.5	60			伊良部	イラブ		24.8	125.2	10
7750 甲佐	コウサ		32.6	130.8	35			宮古島	ミヤコジマ		24.8	125.3	40
7760 松島	マツシマ		32.5	130.4	2			多良間	タラマ		24.7	124.7	16
7770 本渡	ホンド		32.5	130.2	30			伊原間	イバルマ		24.5	124.3	15
7780 八代	ヤツシロ		32.5	130.6	8			与那国島 西丰島	ヨナグニジマ		24.5	123.0	30
7790 水俣	ミナマタ		32.2	130.4	6 146			西表島	イリオモテジマ		24.4	123.8	10
7800 人吉	ヒトヨシ		32.2	130.8	146			石垣島 大原	イシガキジマ		24.3	124.2 123.9	6 20
								大原 波照間	オオハラ ハテルマ		24.3 24.1	123.9	28 38
						044	U	/汉眾 旬	71777		24.1	143.0	38

索引

\boldsymbol{A}	
AFW	32, 45, 123
AST	
B	
BESTEST	160
E	
EPW	20, 21, 23, 160
H	
HASP-L	123
h-t 基準	22, 24, 125, 126
J	
Java	154, 155, 156
Jc-t 基準	22, 24, 125, 126
JPA	154, 155, 156
Js-t 基準	22, 24, 125, 126
M	
MRT	
o	
ОТ	12, 103, 104, 105
P	
PMV	5, 103, 104, 105, 111, 124, 158
R	
RDB	
T	
t-Jh	22, 24, 102, 125
t-Jh 基準	
Two-Node モデル	
t-x	
t-x 基準	22, 24, 125

W

WEADAC	20, 21, 24
WindowType	
X	
XML101, 133, 134,	135, 136, 139, 140, 141, 153, 154, 155, 156, 157
<i>V</i> 1	
一括仕様設定機能	
え え	
お	
<i>∄</i> 4	
外気導入	
外気導入スケジュール	
外気取入量	
外気冷房	
階層構造	
階段状補間	
外表面	50, 53, 56, 83, 89, 153
外部日除け	53, 56, 123, 153, 160
開閉スケジュール	
外壁	51, 56, 68, 69, 76, 83, 97, 121, 122, 124, 153, 157
外壁面積法	
外壁漏気係数法	50, 81, 97, 124
解法設定用空調スケジュール	
各種スケジュール	
拡張アメダス	
家具の計算方法	
家具類	
家具類の吸熱応答	
可視光透過率	

可視光反射率	
壁タイプ	51
壁反射率	71
ガラスカーテンウォール	83
間々欠運転	
換気回数	45, 50, 76, 81, 92, 97, 124
間接光照度	
貫流熱取得	123
き	
期間変動	27
機器	33, 39, 68, 74, 93, 94, 124, 125, 126
機器スケジュール	
気象データのタイプ	
気象データ名称	
机上面計算点	
季節変動	
境界 1m あたりの風量	
境界長さ	
強制空冷	94
居住空間	
気流速度	
<	
空調運転時間帯	42
空調運転スケジュール	12
空調運転モード	24, 43, 63, 64, 65
空調スケジュール	
け	
計算時間間隔12, 13, 24	, 32, 33, 34, 36, 49, 100, 117, 119, 121, 153, 158, 159
計算順序	
傾斜角	56
結果出力ファイル	
	80
厢 教	74

後退差分	117
光熱性能值	
項別公比法	
固定 5 根	
固定温度	
衣替えスケジュール	
さ	
在室率スケジュール	75
最小外気量制御	
最小計算時間間隔	23
最小時間間隔	24
最大熱負荷2, 13, 2	0, 21, 24, 28, 31, 42, 43, 87, 93, 101, 102, 105, 126, 161, 163
最大負荷計算	2, 23, 24, 27, 28, 42, 93, 101, 102, 103, 104, 125, 126, 164
作業面	
作業面高さ	
作用温度	
L	
時間ステップ	27, 78, 100, 102, 104, 105, 117, 124
	17, 26, 29, 31, 32, 33, 42, 43, 44, 63, 89, 124, 153
	, 27, 32, 46, 54, 57, 60, 77, 84, 88, 98, 99, 106, 107, 108, 109
自然放熱	94
	85
	45
	50, 97
室内側放射熱伝達係数	
室内側放射熱伝達係数の割合	
室内環境制御計算	
	63
室熱平衡式	

出力スケジュール	
出力ファイル	
照明器具効率	73
照明出力率	
照明スケジュール	
照明発光効率	73
照明発熱	
照明保守率	73
照明列間隔	73
照明列数	73
使用率スケジュール	
助走計算	
助走計算日数	
人工照明	
人体	
人体スケジュール	
す	
垂直ルーバ	
水平ルーバ	
隙間風	45, 50, 68, 76, 81, 87, 97, 101, 124
隙間風変動率スケジュール	32
スケジュール値	26, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 92, 124
スケジュールモード	
スラット角制御	
スラット角の自動制御	
スラット標準角	
世	
設計気象タイプ	21
設計用気象データ	13, 20, 21, 22, 24, 43, 125, 126, 161
設計用データ	
設定温湿度	
設定照度	
全熱交換器	
潜熱熱平衡式	
潜熱発熱量	
7	
相互干渉	

装置負荷	103, 105, 111, 164
装置容量	
ゾーン間換気	
ゾーン床面積	
た	
代謝量	
多数室相互の影響	117
ダブルスキン	3, 12, 51, 52, 54, 55, 56, 84, 88, 89, 91, 106, 107
暖房 2 種類	
暖房 2 タイプ	
暖房設計用	21, 22, 28, 102, 125, 126, 164
ち	
地中温度	83
地中壁	51, 83
地点番号	21
地点名	21
地表面反射率	50, 56
着衣量	
昼光	41, 53, 68, 71, 89, 90, 123, 127, 128, 129
昼光利用計算	53
昼光利用照明制御計算	11
調光計算	
調光条件	
調光照明列数	
直接照度	
τ	
データ形式	
データベース11, 123, 133, 13-	4, 135, 136, 137, 138, 139, 140, 141, 142, 154, 155
デフォルト値	17, 23, 24, 31, 82, 87, 89, 92, 93, 101
天井(床)	85
天井チャンバ方式	93
天井内	
天井反射率	71
Ł	
等価置換	
特別休日	17. 25. 31

な

内外差圧50,81,97,	124
内部発熱	161
内部発熱係数	1, 95
内壁51, 68, 69, 85, 86, 121, 122,	153
K	
日射吸収率	9, 83
日射遮蔽係数法	
日射透過率	
日射熱取得率	141
日周期定常計算21, 22, 24, 125, 126,	161
日周期定常最大熱負荷計算	13
日周期定常状態	102
二等辺三角波励振	.119
入力データ	156
²	
熱貫流率	141
熱的影響	122
熱負荷要素	153
年間計算	112
年間スケジュール17, 24, 26, 27, 28, 32, 33, 42, 44, 65, 66, 75, 124,	153
年基準危険率	125
0	
軒高	153
は	
梁の計算方法	121
ZV.	
非空調時	158
非密閉空気層	83
標準年データ	21
\$	
不等辺三角波励振	119
ブラインドスケジュール32	
ブラインド内蔵	

ブラインドの使用率	41
^	
平衡含水率曲線	134, 135, 136
米国エネルギー省	20
壁体構成	
壁体構造	51, 52, 69, 83, 85, 153
壁体伝達関数	119
壁体伝熱計算法	119
壁面流	
変動 2 根	119
変動タイプ	
B	
方向識別指標	
放射成分	51, 119, 123, 139, 141
放射成分比	73
放射放熱比率	94
補間方法	32
<i>‡</i>	
マスター	15, 17, 32, 68, 81, 82
マッピング	154, 155, 156, 157
窓通気量	
窓特性	11
窓反射率	71
窓面日照面積比率	
窓枠	
b	
メニュー	15, 29, 66, 85, 92, 111
Ø	
床下空間	12
床反射率	71
J.	
予冷熱計算法	
予冷熱時間	
予冷熱時間帯	
子 必劫 由	49 196

ŋ

隣室温度差係数	69, 85, 86
隣室側壁名	85
隣接空間	12
隣接側壁名	85
隣接タイプ	85
<i>3</i>	
ルンゲクッタ法	117
ħ	
冷却方式	
冷房 3 種類	161
冷房 3 タイプ	21, 22, 126
冷房設計用	21, 22, 28, 103, 125, 126
連成計算13, 23,	24, 37, 42, 43, 44, 63, 64, 65, 117, 129
3	
漏気係数	
	
ロ. カマペ. マ	15 17 90 60 01 00 05 00