第7回 サステナブル建築賞 -大規模建築部門-

国土交通大臣賞

YKK80ビル

_ 西側のアルミ押出形材スクリーン アメニティの充実したトイレ 多方向から外光が入る明るいオフィス

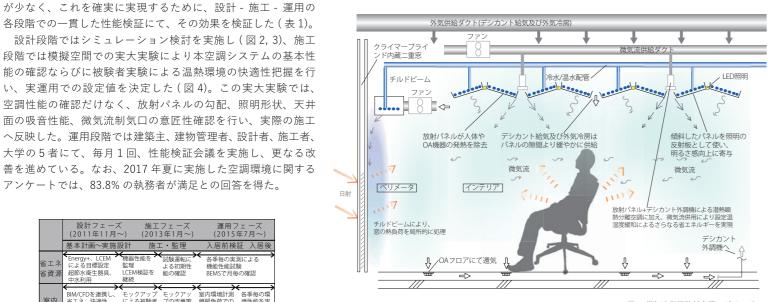
快適性と省エネルギー性を高めた微気流併用放射空調システムの導入

【インテリア空調の概要と微気流併用の意図

執務室の空調は天井に設置した放射パネルにて行う。山谷の ある傾斜形状とし、パネル面で冷やされた空気が自然対流によ り居住域へもたらされ、緩やかな循環を生むことを意図した(写 真1)。加えて、放射空調のその先の快適性を目指し、木陰のそ よ風に着想し、微気流を付加することを計画した。温度と湿度 を分けてコントロールする潜熱顕熱分離空調に対し、さらに気 流を付加して快適性を向上させる空調計画である。具体には、 放射パネル上部に小型ファンを設置し、ライン制気口により、 居住域に 0.2m/s 程度の気流を提供するものである (図1)。

2013 ASHRAE Handbook Fundamentals, ch.9 fig. 17、PMV ±0に示される室温・MRT・気流の関係を参照すると、室内空 気温度よりも平均放射温度が低くなる放射冷房室内において、 微気流を付加することで快適性を維持したまま設定室温を高く 緩和できることが示唆されている。これは、本計画の実効性を 後押しするものであった。

微気流併用の効果検証


が少なく、これを確実に実現するために、設計 - 施工 - 運用の 各段階での一貫した性能検証にて、その効果を検証した(表1)。 設計段階ではシミュレーション検討を実施し(図2.3)、施工 段階では模擬空間での実大実験により本空調システムの基本性 能の確認ならびに被験者実験による温熱環境の快適性把握を行 い、実運用での設定値を決定した(図4)。この実大実験では、 空調性能の確認だけなく、放射パネルの勾配、照明形状、天井 面の吸音性能、微気流制気口の意匠性確認を行い、実際の施工 へ反映した。運用段階では建築主、建物管理者、設計者、施工者、 大学の5者にて、毎月1回、性能検証会議を実施し、更なる改

アンケートでは、83.8%の執務者が満足との回答を得た。

			フェ <i>ー</i> ズ 3年1月~)	運用フェーズ (2015年7月~)	
	基本計画~実施語	設計 施二	□・監理	入居前検	証 入居後
省エネ 省資源	Energy+、LCEM による目標設定 超節水衛生器具、 中水利用	機器性能を 監理 LCEM検証を 継続	試験運転に よる初期性 能の確認	各季毎の実測による 機能性能試験 BEMSで月毎の確認	
室内環境	BIM/CFDを連携し、 省エネ、快適性、 意匠性に配慮した 室内環境と ファサード設計	← → モックアップ による被験者 検証	モックアッ プの改善策 を施エヘフ ィードバッ ク	室内環境計測 模擬負荷での 設計性能確認 ブラインドの 最適化	各季毎の環 境性能を実 測により確 認 (2年継続中)
伝達	★ 施主要望事項を ブリーフィング	会議計意図伝 連による意 識共有	取扱い説明	◆施主・運用管理者へ検証 結果の報告と課題共有 運用改善マニュアルを作成	

表 1. 各段階における性能検証

LED 照明を配置した (写真 1 詳細図)。アンビエント照明 好に配慮して気流感の選択を可能としている としての照度は 3001x 設定であるが、傾斜したパネル面 パネル上部のダクトより供給されるデシカント外調機 が反射板の役割を果たすことで、天井面の明るさ感が向の調湿外気は、小梁のない空間をプレナムチャンバーと 上し、室内は十分な明るさを有している。谷の部分には して利用し、パネルの山谷配置により生じる隙間より押 列毎に設備プレートが配され、微気流を付加するドラフ し出される。居住域へ供給された後、レタンチャンバー ト抑制型ライン制気口、感知器等の防災設備 無線アン を兼用する床下 OA フロア (175mm) を介しデシカント外 テナ等を有効に設置している。なお、選定した制気口は、 調機へ還気される。

図 1. 微気流併用放射空調 ダイアグラム 山の部分には、明るさ・人感センサー制御のライン型 約 70mm 毎に風向が変えられる器具を採用し、個人の嗜 天井内のダクティングを最小化することで、階高 3,850mm でありなが 、天井高さは 2.800mm を確保している。設計段階では BIM(Building

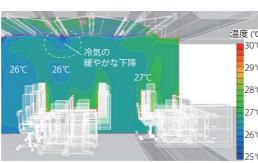


図 2.BIM を活用した CFD 解析 (温度

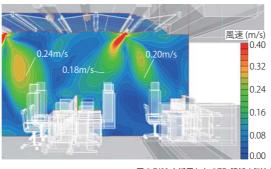
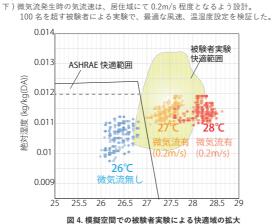



図 3.BIM を活用した CFD 解析(気流) 上)パネル下端から冷気が緩やかに落ち、冷気の大きな循環が示唆される。

被験者実験の結果、75%以上が快適と答えた範囲を示す。ASHRAEで快適範 囲とされる作用温度、絶対湿度範囲を緩和しても、放射冷房で微気流がある場 合、27°C、28°Cでも快適との申告が多く得られた。日本における気流に対す る嗜好を示唆する結果が得られた。

都市型環境建築での普及性のある負荷削減と適切な負荷処理

本社ビルの顔となる多機能ファサード

1) 多機能ファサードの概要

本建物は、東京都千代田区、秋葉原駅近くに立地 する。メインファサードは西面に約70mである。昭 和通りおよび首都高速道路を目前にし、その幹線道 路の向こう側は駅前繁華街と中小ビル群が広がる。 都心に立地し、日射、騒音、景観において過酷な敷 地条件の中で、外装はグローバルヘッドクォーター の顔となる意匠性、快適性、日射熱負荷抑制などを 実現する、多機能ファサードとして計画された。

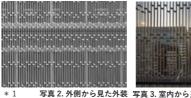
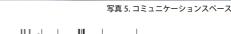
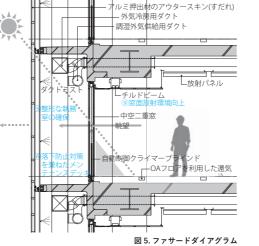


写真 2. 外側から見た外装 写真 3. 室内から見た秋葉原の街並 一枚の繊細で大きなファブリックを 雑然とした街並みをフィルタリ ることで、室内に落ち着きをも たらす。

2) 多機能ファサードの計画意図


建物の最外部のアウタースキンは、日本の伝統的な スダレに着想し、材質は YKK を象徴するアルミ押出 材を用いた多層型アルミレイヤーとした。


その内側に奥行 1.5m の庇兼バルコニーがあり、空 調・換気用の主ダクトをこのバルコニー部に配置する ことで、執務室内のダクトスペースを削減し、整形な オフィス空間を確保している。また、このスペースは メンテナンスデッキの役割もあり、ダクトや付属機器 の保全、窓清掃にも活用される(写真4)。

窓は外部騒音に配慮し、中空二重窓を採用した。ブ ラインドはその二重窓内に設置され、庇でカットし

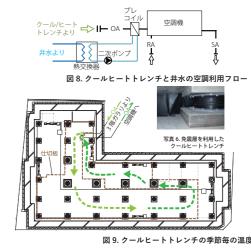
きれない直達日射を遮りながら眺望が確保できるクラ イマー型自動制御ブラインドとした。室内の温熱環境 はチルドビームにより適切に処理され、コミュニケー ションスペースとして十分な環境とした (写真5)。 このように、アウタースキン、庇、窓、ブラインドの 機能を組み合わせたファサードは、9つの機能を有す

①直射光のカットによる眩しさ低減 日射遮蔽による負荷削減と窓面放射の低減 適度な拡散光による昼光利用 ⑥落下防止対策のされたメンテナンスデッキ の修景、眺望コントロール ⑨チルドビームによる窓面放射環境向上

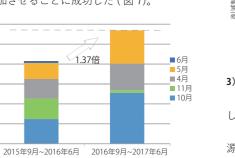
▋自然エネルギーの活用技術

中間期の空調負荷削減を意図し、外気冷房が可能 な計画とした。都心部の排気ガス等の空気環境、音 る多機能ファサードとして構築された(図5,6)。 環境に配慮し、交通量の多い地上付近からではなく

屋上から外気を取り入れる計画としている。年間で 約 2.000MJ の冷房熱量が削減できており、性能検証 による運用改善により、2年目には運転時間を1.3 倍程度増加させることに成功した(図7)。



2) クール / ヒートトレンチと 井水利用空調


BCP 対策として、市水断水時に給水可能な井戸、 地震時に建物内の揺れを低減する免震構造を採用し た。これは、災害対策としての投資ではあるものの、 日常の省エネルギーにも寄与するしくみを計画した

免震層については、ゴム板で仕切りを構築し、クー ル/ヒートトレンチとして利用できる計画とした (図9,写真6)。地中の恒温性を利用した取入れ外気 の予冷予熱効果として、最大で約10℃の顕熱を緩和 できることを確認した。井戸水についても同様に、 年間安定した地中熱を利用し、外調機の予冷予熱コ イルに通水して活用する計画とした。取水制限によ り、日常利用可能な 10t/ 日を、便所洗浄水、植栽灌 水としても利用することで、多段利用を行っている。

クール / ヒートトレンチと井戸水による外気負荷 低減効果は、外気処理エネルギーの約40%削減とな ることが運用実績により確認された(図10)。

/KK80 ビル

(図8)。

図 10. クールヒートトレンチと井戸水利用におけるエネルギー削減 3) 再生水利用と節水器具による省資源化

水の省資源について、再生水の利用と節水に配慮 した計画とした。

トイレ洗浄水及び植栽灌水に使用する雑用水の水 源は、雨水、井戸水、厨房排水、空調ドレン水とした。 これにより雑用水のほぼ100%をこの再生水で賄う ことができた(図11)。

大便器は一般オフィスにおける節水型 (洗浄水量: 6L) よりもさらに小さな洗浄水量:3.8L の大便器を 採用した。この 3.8L 型大便器は家庭用としてリリー スされた製品であり、計画当初はオフィスビルでの 多連結設置での採用事例はなかった。そこで本建物 では、洗浄に不具合が起きないよう綿密な試験を実 汚物流下の課題をクリアして採用に至った経 緯がある。また、手洗い自動水栓については、衛生 面に配慮しながら適切な手洗時間の目安となると共 に、無駄に水を流し続けることがないよう、14秒オー トストップ型を採用した。これらの取り組みにより、 昨年1年間の建物水使用量実績は、一般建物の水使 用量と比較し約45%削減となった(図12)。

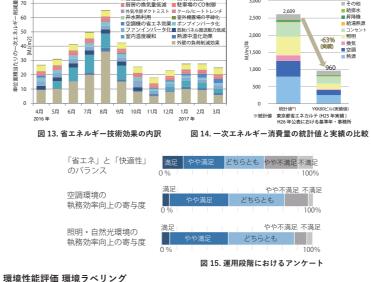


図 12. 上水と雑用水の利用量

設計・施工・運用の各段階での一貫した性能検証と評価の実施

様々な技術は、設計段階でのシミュレーション、 施工段階でのモックアップ、運用段階での性能検証 会議にて検証され、意図された快適性、省エネが確 実に運用、実現することを確認してきた(既出表1)。 2016年度の1年間の月別省エネルギー効果を(図 13) に示す。盛夏に注目すると、西面ファサードに おいて、WEBプログラム基準「庇なし,単板ガラス, ブラインド有り」と比べ、日射遮蔽による負荷削減 効果が大きい。次いで室内温度緩和効果が大きく、 これは微気流併用放射空調によって夏期に快適性を 保ったまま 27 ~ 28°Cへの設定緩和を実現し、冬期 にはチルドビームの温風運用でペリメータ負荷を効 率よく処理した結果といえる。更に熱源からの供給 水温は、冷水還 17°C / 往 13°C、温水還 37.5°C / 往 45℃とすることで、ヒートポンプ熱源の効率向上に よる省エネ効果も計上されている。また、ファンイ ンバータ効果が10月や4,5月の中間期に多く計上 され、外気冷房時の省エネルギー効果が確認された。

となった (図 14)。この値は東京都省エネカルテ (平 LEED-CS (v.2009) 成 26 年度公表)事務所基準値比 63% 削減に相当す ASHRAE Technology Aw る。また、運用段階でのアンケートでは、省エネと → First Place 快適性とのバランス、空調環境と光環境における執 BELS 務効率向上に対し、高い評価が得られた(図15)。

一次エネルギー消費量の実績値は 960[MJ/ ㎡年] 環境性能評価 環境ラベリング CASBEE(2014, 自己評価)

